ch. 9 solution behavior
*gas mixing(ideal gas): 原子間距離遠,無相互作用力的問題; 100%混合無溶解度的問題
*condensed phase(liquid or solid): strong interaction between atoms, solubility issues in solid: 1. atom size difference in crystal(尺寸影響, Hume-Rothery rule). 2. 鍵結影響: 陰電性(從外抓電子的能力), 價數valence.
§Raoults law & Henrys law
1. pure liquid A: evaporation rate rₑ(A) and condensation rate rᶜ(A)=kpᴀ⁰
at equilibrium, rₑ(A)=rᶜ(A) → rₑ(A)=kpᴀ⁰
2. pure liquid B: evaporation rate rₑ(B) and condensation rate rᶜ(B)=kpᴃ⁰
at equilibrium, rₑ(B)=rᶜ(B) → rₑ(B)=kpᴃ⁰
3. B+(very small amount A): condensation rate of A rᶜ(A)=kpᴀ, condensation rate of B rᶜ(B)=kpᴃ
Assuming a. Eᴀᴀ=Eᴃᴃ=Eᴀᴃ(bonding energy) i.e. Eᵢʲ<0 b. surface composition=bulk composition, c.surface fraction of A=Xᴀ
evaporation rate of A: rₑ(A)Xᴀ; as equilibrium, rₑ(A)Xᴀ=kpᴀ ⸪rₑ(A)=kpᴀ⁰ → Xᴀpᴀ⁰=pᴀ ⸫ Xᴃpᴃ⁰=pᴃ
Xᴀ=pᴀ/pᴀ⁰, Xᴃ=pᴃ/pᴃ⁰....Raoults law
4. if Eᴀᴃ is more negative(|Eᴀᴃ|>|Eᴀᴀ| and |Eᴀᴃ|>|Eᴃᴃ|), evaporation rate of A, rₑ(A)<rₑ(A)
rₑ(A)Xᴀ=kpᴀ → 同除以rₑ(A)=kpᴀ⁰ → rₑ(A)Xᴀ/rₑ(A)=kpᴀ/kpᴀ⁰ → [rₑ(A)/rₑ(A)]Xᴀ=pᴀ/pᴀ⁰
→ γᴀXᴀ=pᴀ/pᴀ⁰ (γᴀ<1) *γᴀ is constant, independent of Xᴀ(與成分無關)...Henrys law
pᴀ/pᴀ⁰=γᴀXᴀ, pᴃ/pᴃ⁰=γᴃXᴃ

solution: (aᵢ/Xᵢ)≡γᵢ activity coeff.
Raoults law: aᵢ=Xᵢ (or γᵢ=1)
Henrys law: 1. aᵢ=γᵢXᵢ, γᵢ≠1 2. γᵢ independent of Xᵢ(有限範圍內有效,若超過臨界值,A原子周圍就不再都是B原子,與成分有關)
§Gibbs-Duhem eq.
Q=Q(T,P,nᵢ,nʲ,nₖ,....) in a solution composed of (nᵢ,nʲ,nₖ,....)
→dQ=(∂Q∕∂T)ᴘ,ₙᵢ,...dT+(∂Q∕∂P)ᴛ,ₙᵢ,...dP+(∂Q∕∂nᵢ)ᴛ,ᴘ,ₙʲ,...dnᵢ+...
at fixed T,P dQ=Qᵢdnᵢ+Qʲdnʲ+Qₖdnₖ+...
Q=nᵢQᵢ+nʲQʲ+nₖQₖ+... → dQ=Qᵢdnᵢ+Qʲdnʲ+Qₖdnₖ+...+(nᵢdQᵢ+nʲdQʲ+nₖdQₖ+...)
∑nᵢdQᵢ=0, ∑XᵢdQᵢ=0...Gibbs-Duhem eq.
§Gibbs free energy of binary solution
1. molar Gibbs free energy (G) ← solution(given)
partial Gibbs free energy Gᴀ, Gᴃ ← each component=?
⸪G=XᴀGᴀ+Xᴃ Gᴃ...(1) dG=GᴀdXᴀ+ GᴃdXᴃ+XᴀdGᴀ+Xᴃ dGᴃ → dG=GᴀdXᴀ+ GᴃdXᴃ
binary Xᴀ+Xᴃ =1, dXᴀ=-dXᴃ ⸫dG=(Gᴀ- Gᴃ)dXᴀ , Gᴀ- Gᴃ=dG/dXᴀ ...(2)
(2)∙Xᴃ+(1) → G+Xᴃ(dG/dXᴀ)=(Xᴀ+Xᴃ ) Gᴀ → Gᴀ=G+(1-Xᴀ)(dG/dXᴀ) or Gᴃ=G+(1-Xᴃ)(dG/dXᴃ)
Gᵢ=G+(1-Xᵢ)(dG/dXᵢ) 知其中之一即可求其餘自由能!
e.g. G=aXᴀXᴃ, Gᴀ=? G=aXᴀ(1-Xᴀ)=aXᴀ-aXᴀ², dG/dXᴀ=a-2aXᴀ ⸫ Gᴀ=aXᴀXᴃ+Xᴃ(a-2aXᴀ)= aXᴃ-aXᴀXᴃ=aXᴃ(1-Xᴀ)=a(1-Xᴀ)²
fixed T,P G=G(Xᴀ,Xᴃ )=G(Xᴀ)=a+bXᴀ+cXᴀ²+...
2. ∆Gᴹ, ∆Gᴀᴹ, ∆Gᴃᴹ i: component
1 mole i(pᵢ⁰) → mixed into solution(pᵢ), ∆Gᵢ=Gᵢ₍ₛₒₗ₎-Gᵢ₍ₚᵤᵣₑ₎=RTln(pᵢ/pᵢ⁰)=RTlnaᵢ
note: Gᵢ₍ₛₒₗ₎=Gᵢ, Gᵢ₍ₚᵤᵣₑ₎=Gᵢ⁰, ⸫∆Gᵢ=∆Gᵢ=Gᵢ-Gᵢ⁰=RTlnaᵢ
A: nᴀ and B: nᴃ mixing at (T,P), 混合前: Gᵇᵉᶠ=nᴀGᴀ⁰+nᴃGᴃ⁰, 混合後: Gₐᶠₜ=nᴀGᴀ+nᴃGᴃ
⸫∆Gᴹ=Gₐᶠₜ-Gᵇᵉᶠ= nᴀ(Gᴀ-Gᴀ⁰)+nᴃ(Gᴃ-Gᴃ⁰)=nᴀ∆Gᴀ+nᴃ∆Gᴃ=nᴀRTlnaᴀ+nᴃRTlnaᴃ=RT(nᴀlnaᴀ+nᴃlnaᴃ)
→ ∆Gᴹ=RT(Xᴀlnaᴀ+Xᴃlnaᴃ) 除以nᴀ+nᴃ成為molar Gibbs free energy.
or 直接寫 ∆Gᴹ=XᴀRTlnaᴀ+XᴃRTlnaᴃ
3. 圖解 Gᵢ(Gᴀ,Gᴃ), ∆Gᵢ(∆Gᴀ,∆Gᴃ) given: ∆Gᴹ curve, ask ∆Gᴀ=?, ∆Gᴃ=?

Given G₍ₛₒₗ₎, curve, ask Gᴀ=?, Gᴃ=?

§properties of ideal solution
ideal solution: Eᴀᴀ=Eᴃᴃ=Eᴀᴃ(same bonding energy), aᵢ=Xᵢ (or γᵢ=1)
⸪∆Gᵢ=RTlnaᵢ ⸫∆Gᵢ=RTlnXᵢ ask ∆Gᴹ=?, ∆Hᴹ=? ∆Sᴹ=?, ∆Vᴹ=? 與ideal das 混合結果相同
∆Gᴹ=RT∑XᵢlnXᵢ, ∆Sᴹ=- R∑XᵢlnXᵢ, ∆Hᴹ=0, ∆Vᴹ=0
∆Vᴹ=∑Xᵢ∆Vᵢ 由G求V→ dG=-SdT+VdP+∑ μᵢdnᵢ at fixed T, (∂G∕∂P)ᵀ,ᶜₒₘₚ=V (ideal gas)
沿用至ideal solution, 混合後: Vᵢ=(∂Gᵢ∕∂P)ᵀ,ᶜₒₘₚ, 混合前: Vᵢ⁰=(∂Gᵢ⁰∕∂P)ᵀ
∆Vᵢ=Vᵢ-Vᵢ⁰=[∂(Gᵢ-Gᵢ⁰)∕∂P]ᵀ,ᶜₒₘₚ=[∂(RTlnXᵢ)∕∂P]ᵀ,ᶜₒₘₚ=0, Vᵢ=Vᵢ⁰ → ∆Vᴹ=0
∆Hᴹ=∑Xᵢ∆Hᵢ 由G求H→ Gibbs-Hlemholtz eq. 混合後: [∂(Gᵢ/T)∕∂T]ᴾ,ᶜₒₘₚ=-Hᵢ/T², 混合前: [∂(Gᵢ⁰/T)∕∂T]ᴾ,ᶜₒₘₚ=-Hᵢ⁰/T² →
, ⸪(Gᵢ-Gᵢ⁰)/T=RlnXᵢ, ⸫∆Hᵢ=0
∆Sᴹ=? ∆Gᴹ=∑Xᵢ∆Gᵢ=RT∑XᵢlnXᵢ, ∆Gᴹ=∆Hᴹ-T∆Sᴹ, ∆Sᴹ=-∆Gᴹ/T=-R∑XᵢlnXᵢ
由G求S→ -(∂G∕∂T)ᴾ,ᶜₒₘₚ=S → -(∂∆Gᵢ∕∂T)ᴾ,ᶜₒₘₚ=∆Sᵢ=-RlnXᵢ, ∆Sᴹ=∑Xᵢ∆Sᵢ=-R∑XᵢlnXᵢ
以binary solution為例,nᴀ mole A與nᴃ mole B 混合, 混合前entropy=S⁰, 混合後entropy=S
∆Sᴹ=S-S⁰=klnΩ-klnΩ⁰=kln[(nᴀ+nᴃ)!/(nᴀ!nᴃ!)]-kln(nᴀ!/nᴀ!∙nᴃ!/nᴃ!)
i.e. 統計熱力 S≡klnΩ, stirling approx. LnN!≈NlnN-N
→ ∆Sᴹ=k[(nᴀ+nᴃ)ln(nᴀ+nᴃ)-(nᴀ+nᴃ)-nᴀlnnᴀ+nᴀ-nᴃlnnᴃ +nᴃ] ″configuration entropy″
=-k{nᴀln[nᴀ/(nᴀ+nᴃ)]+nᴃln[nᴃ /(nᴀ+nᴃ)]}=-k[nᴀlnXᴀ+nᴃlnXᴃ]=-k(nᴀ+nᴃ)[XᴀlnXᴀ+XᴃlnXᴃ]
=-k∙Nᴀ∙n(XᴀlnXᴀ+XᴃlnXᴃ)=-R∙n(XᴀlnXᴀ+XᴃlnXᴃ) → ∆Sᴹ=-R(XᴀlnXᴀ+XᴃlnXᴃ), ⸫∆Sᴹ=-R∑XᵢlnXᵢ
e.g. Vacancy or impurity, 從自由能看平衡濃度, ∆Gᴹ=∆Hᴹ-T∆Sᴹ, 焓視為形成空位所必需的能量,另一方面空位加入晶格中(如二元溶液混合)造成亂度增加,最後∆Gᴹ=0達到平衡
equilibrium NV =Ne⁻Qᵛ/ᴿᵀ, k=-1.38∙10⁻²³ J/K Boltzmanns constant
i.e. N: total # of atomic site, Qv: energy required for the formation of a vacancy.

§non-ideal solution, γᵢ≡aᵢ/Xᵢ, γᵢ≠1(γᵢ>1 or γᵢ<1) → γᵢ=f(Xᵢ,T)
⸪∆Gᵢ=RTlnaᵢ=RTlnXᵢ+RTlnγᵢ → ∆Hᵢ≠0
∆Gᵢ=RTlnaᵢ → 求∆Hᵢ [∂(∆Gᵢ/T)∕∂T]ᴾ,ᶜₒₘₚ=-∆Hᵢ/T² → [∂(Rlnγᵢ)∕∂T]ᴾ,ᶜₒₘₚ=-∆Hᵢ/T² → [∂(Rlnγᵢ)∕∂(1/T)]ᴾ,ᶜₒₘₚ=-∆Hᵢ
notes: case #1. γᵢ≠f(T), independent of T. ∆Hᵢ=0
case #2. in general, γᵢ=f(T)
e.g. If γᴀ>1 in binary solution, γᴀ≡[rₑ(A)/rₑ(A)]表示|Eᴀᴃ|<|Eᴀᴀ|, A-B bonding比較弱,solute A容易蒸發; 另外任何溶液溫度升高,亂度加大,使 γᵢ→1, ⸫dγᵢ/dT<0, dlnγᵢ/dT<0.
Case #3. If γᵢ>1, 溫度升高使 γᵢ→1, ⸫dγᵢ/dT<0, dlnγᵢ/dT<0 → ∆Hᵢ>0 endothermic reaction, |Eᴀᴃ|<|Eᴀᴀ|, clustering
case #4. If γᵢ<1, 溫度升高使 γᵢ→1, ⸫dγᵢ/dT>0, dlnγᵢ/dT>0 → ∆Hᵢ<0 exothermic reaction, |Eᴀᴃ|>|Eᴀᴀ|, ordering to form compound.
§application of Gibbs-Duhem eq.
1. given aᴃ(Xᴃ) → calculate aᴀ(Xᴀ) 2. if solute follows Henrys law, solvent would follows Raoults law. The same result in the opposite way. 3. given aᴀ(Xᴀ) → calculate ∆Gᴹ=?
∑XᵢdQᵢ=0...Gibbs-Duhem eq. ⸫∑XᵢdGᵢ=0 → RT∑Xᵢdlnaᵢ=0
binary solution, Xᴀdlnaᴀ+Xᴃdlnaᴃ=0 → dlnaᴀ=-(Xᴃ/Xᴀ)dlnaᴃ,


Xᴀdlnaᴀ+Xᴃdlnaᴃ=0 → XᴀdlnXᴀ+Xᴀdlnγᴀ+XᴃdlnXᴃ+Xᴃdlnγᴃ=0
⸪ XᴀdlnXᴀ+XᴃdlnXᴃ=Xᴀ(dXᴀ/Xᴀ)+Xᴃ(dXᴃ/Xᴃ)=dXᴀ+dXᴃ=0,
⸫Xᴀdlnγᴀ+Xᴃdlnγᴃ=0 → dlnγᴀ=-(Xᴃ/Xᴀ)dlnγᴃ→
when Xᴃ→1 or Xᴀ→0 ⸫γᴃ→1, lnγᴃ=0; 1-Xᴃ→0, αᴃ=lnγᴃ/(1-Xᴃ)²→finite value
lnγᴀ= -XᴀXᴃ αᴃ-∫Xᴀ=1αᴃdXᴀ...(M3)
dlnγᴀ=-(Xᴃ/Xᴀ)∙(2αᴃ XᴀdXᴀ+Xᴀ²dαᴃ)=-2αᴃ Xᴃ dXᴀ-Xᴀ Xᴃ dαᴃ
d(αᴃXᴀ Xᴃ)=Xᴀ Xᴃ dαᴃ+αᴃ XᴃdXᴀ+αᴃ XᴀdXᴃ 移項代入上式
dlnγᴀ=-2αᴃ Xᴃ dXᴀ-d(αᴃXᴀ Xᴃ)+αᴃ XᴃdXᴀ+αᴃ Xᴀ dXᴃ=-d(αᴃXᴀ Xᴃ)-αᴃ (XᴃdXᴀ-XᴀdXᴃ) ⸪ dXᴀ=-dXᴃ
dlnγᴀ=-d(αᴃXᴀ Xᴃ)-αᴃdXᴀ → 積分即得

3. 已知aᴃ, ∆Gᴃ=RTlnaᴃ, 求∆Gᴹ=?
⸪ ∆Gᴃ=∆Gᴹ+(1-Xᴃ)∙(d∆Gᴹ/dXᴃ ) → ∆GᴃdXᴃ=∆GᴹdXᴃ +(1-Xᴃ)d∆Gᴹ → ∆GᴃdXᴃ=-∆GᴹdXᴀ+Xᴀd∆Gᴹ
除以Xᴀ² → ∆GᴃdXᴃ/Xᴀ²=(-∆GᴹdXᴀ+Xᴀd∆Gᴹ)/Xᴀ²=d(∆Gᴹ/Xᴀ) →積分
→
Ex. Fe-Ni, aᴺᵢ; Fe-Cu, aᴄᵤ


2. solute B follows Henrys law, solvent A will follow Raoults law.
γᴃ=γᴃ⁰=constant, pf: ⸪aᴃ=Xᴃγᴃ⁰, ⸫lnaᴃ =lnXᴃ+lnγᴃ⁰ → dlnaᴃ =dlnXᴃ ; G-D eq. dlnaᴀ=-(Xᴃ/Xᴀ)dlnaᴃ
→ dlnaᴀ=-(Xᴃ/Xᴀ)dlnXᴃ=-(Xᴃ/Xᴀ)∙(dXᴃ /Xᴃ)=-dXᴃ /Xᴀ=dXᴀ /Xᴀ=dlnXᴀ → 積分 ∫dlnaᴀ=∫dlnXᴀ
lnaᴀ=lnXᴀ , aᴀ=Xᴀ 反向也可證明
§Regular solution
*ideal: aᵢ=Xᵢ or γᵢ=1, ∆Hᵢ=0, ∆Sᵢ=-RlnXᵢ, ∆Gᵢ=RTlnXᵢ
*non-ideal: γᵢ≠1 and γᵢ≠const. γᵢ=f(Xᵢ,T) → ∆Hᵢ=-T²[∂(Rlnγᵢ)∕∂T]ᴾ,ᶜₒₘₚ≠0=f(Xᵢ,T) 太複雜了!
找一個simplest function of ∆Hᵢ → Regular solution!
Define „regular solution” in mathematic form: 1. ∆Sᵢ=∆Sᵢid =-RlnXᵢ, 2. ∆Hᵢ=f(Xᵢ) only! Indep. of T.
∆Hᴹ=∑Xᵢ∆Hᵢ=f"(Xᵢ), 特性: 當Xᴀ→0, Xᴃ→1 or Xᴀ→1, Xᴃ→0時, ∆Hᴹ→0
⸫∆Hᴹ=XᴀXᴃ(α+bXᴀ +cXᴀ²+...), simplest form: ∆Hᴹ=XᴀXᴃα
求∆Hᴀ=?, ∆Hᴃ=? ∆Hᵢ=∆Hᴹ+(1-Xᵢ)(d∆Hᴹ/dXᵢ), ∆Hᴹ=αXᴀ(1-Xᴀ)=αXᴀ-αXᴀ²
⸫∆Hᴀ=XᴀXᴃα+(1-Xᴀ)(α-2αXᴀ)=XᴀXᴃα+Xᴃ(α-2αXᴀ)=αXᴃ-αXᴀ Xᴃ=αXᴃ(1-Xᴀ)=αXᴃ²
∆Hᴀ=α(1-Xᴀ)², ∆Hᴃ=α(1-Xᴃ)², ∆Gᴀ=∆Hᴀ-T∆Sᴀ=RTlnaᴀ=RTlnXᴀ+RTlnγᴀ=RTlnγᴀ-T(-RlnXᴀ)
⸫∆Hᴀ=RTlnγᴀ 前面define: α function, αᵢ≡lnγᵢ/(1-Xᵢ)² → αᴀ=lnγᴀ/(1-Xᴀ)²
αᴀ=lnγᴀ/(1-Xᴀ)²=1/(1-Xᴀ)²∙[α(1-Xᴀ)²/RT]=α/RT ⸪∆Hᴀ=α(1-Xᴀ)²=RTlnγᴀ 同時αᴃ= α/RT=αᴀ=α
→ α=αRT 物理意義?
§Excess quantity, „XS” ∆Sᵢₓₛ, ∆Hᵢₓₛ, ∆Gᵢₓₛ
∆Gᵢ=RTlnaᵢ=RTlnXᵢ+RTlnγᵢ=∆Gᵢid+∆Gᵢₓₛ,
∆Gᴹ=∑Xᵢ∆Gᵢ=∆Hᴹ-T∆Sᴹ ⸫∆Gₓₛ=∆Gᴹ-∆Gᴹ,id=(∆Hᴹ-∆Hᴹ,id)-T(∆Sᴹ-∆Sᴹ,id) ⸪∆Hᴹ,id=0, ∆Sᴹ=∆Sᴹ,id
→∆Gₓₛ=∆Hᴹ, ∆Gₓₛ=RT(Xᴀlnγᴀ+Xᴃlnγᴃ)=∆Hᴹ, ∆Gₓₛ= RT∑ Xᵢlnγᵢ
Regular solution: αᴃ=αᴀ=α, lnγᴀ=α(1-Xᴀ)², lnγᴃ=α(1-Xᴃ)²代入上式∆Gₓₛ
⸫∆Gₓₛ=∆Hᴹ=RTαXᴀXᴃ=αXᴀXᴃ indep. of T.
∆Sₓₛ=0, ∆Sₓₛ=-(∂∆Gₓₛ∕∂T)ᴾ,ᶜₒₘₚ=0
*At a fixed composition, ∆Gᴀₓₛ=RTlnγᴀ → RT₁lnγᴀ₁=RT₂lnγᴀ₂ → lnγᴀ₁/lnγᴀ₂=T₂/T₁
Summary for simplest regular solution:
∆Sᵢₓₛ=0, ∆Hᵢₓₛ=RTlnγᵢ, ∆Gᵢₓₛ=RTlnγᵢ
1. ∆Gₓₛ=∆Hᴹ=RTαXᴀXᴃ=αXᴀXᴃ 2. ∆Gᵢₓₛ=∆Hᵢₓₛ=RTlnγᵢ 3. ∆Sᵢₓₛ=0, ∆Sₓₛ=0, ∆Sᵢ=∆Sᵢid =-RlnXᵢ 4. αᴃ=αᴀ=α=α/RT
實例判斷:
1. if ∆Hᴹ=bXᴀXᴃ, ∆Gₓₛ=bXᴀXᴃ, b≠b→ ∆Gₓₛ≠∆Hᴹ non-regular!
e.g. Au-Cu at 1550K, ∆Gₓₛ=-24060XAuXCu and ∆Hᴹ non-symmetric → non-regular!
Au-Ag at 1350K, ∆Hᴹ=-20590XAuXAg and ∆Gₓₛ non-symmetric → non-regular!
2. T=800K,

∆Gₓₛ=∆Hᴹ=XᴀXᴃ(α+bXᴀ)≠f(T), e.g. Au-Ag at 1350K, ∆Gₓₛ=∆Hᴹ=XᴀXᴃ(α+bXᴀ ), α=-11320J, b=1940J
*non-regular: ∆Gₓₛ=(a+bXᴀ)XᴀXᴃ∙(1-T/τ)=f(T), ∆Sₓₛ=-(∂∆Gₓₛ∕∂T)ᴾ,ᶜₒₘₚ=1/τ(a+bXᴀ)XᴀXᴃ≠0
∆Hᴹ=∆Hₓₛ=∆Gₓₛ+T∆Sₓₛ=(a+bXᴀ)XᴀXᴃ→ ∆Gₓₛ≠∆Hᴹ non-regular!
§Quasi-chemical model of solution, 以統計方法解釋α的物理意義
e.g. Binary solution, A+B, Nᴀ atoms and Nᴃ atoms(Nᴀ+Nᴃ=N₀=6.02∙10²³)
考慮 ∆Hᴹ=∆Uᴹ+P∆Vᴹ, assume ∆Vᴹ=0, ⸪Vᴀ⁰=Vᴀ=Vᴃ= Vᴃ⁰; ∆Hᴹ=∆Uᴹ=∆Eᴹ (鍵結能變化)
鍵結能, E=ꝑᴀᴀEᴀᴀ+ꝑᴃᴃEᴃᴃ+ꝑᴀᴃEᴀᴃ, i.e. Eᵢʲ: bonding energy of i-j, ꝑᵢʲ: # of i-j bonds
假設A原子的配位數為Zᴀ, Nᴀ原子的鍵結數可表示成: Nᴀ∙Zᴀ=2ꝑᴀᴀ+ꝑᴀᴃ → ꝑᴀᴀ=½(Nᴀ∙Zᴀ-ꝑᴀᴃ), 同理
B原子的配位數設為Zᴃ, Nᴃ原子的鍵結數可表示成: Nᴃ∙Zᴃ=2ꝑᴃᴃ+ꝑᴃᴀ → ꝑᴃᴃ=½(Nᴃ∙Zᴃ-ꝑᴃᴀ)
代入鍵結能式中, E= ½Nᴀ∙ZᴀEᴀᴀ+½Nᴃ∙ZᴃEᴃᴃ+ꝑᴀᴃ[Eᴀᴃ- ½(Eᴀᴀ+Eᴃᴃ)]
Pure A: Nᴀ∙Zᴀ=2ꝑᴀᴀ, Eᴀ⁰=ꝑᴀᴀEᴀᴀ= ½Nᴀ∙ZᴀEᴀᴀ; Pure B: Nᴃ∙Zᴃ=2ꝑᴃᴃ, Eᴃ⁰=ꝑᴃᴃEᴃᴃ=½Nᴃ∙ZᴃEᴃᴃ
∆Eᴹ=E-(Eᴀ⁰+Eᴃ⁰)=ꝑᴀᴃ[Eᴀᴃ- ½(Eᴀᴀ+Eᴃᴃ)] Assume Zᴀ=Zᴃ=Z, ꝑᴀᴃ=?
在計算ꝑᴀᴃ之前, ⸪regular solution的定義: ∆Sᵢ=∆Sᵢid =-RlnXᵢ, 表示溶液處於complete random的條件下, 原子間鍵結沒有偏好。換言之,某一固定溫度的熱能足以彌補原子間鍵結能的差異,還是處於complete random. 例如: Arrehnius eq. D=D₀e⁻q/ᵏᵀ= D₀e⁻Q/ᴿᵀ 視為粒子的活化能q與kT做比較或Q與平均熱能RT比較,得到的平衡量。因此|∆Hᴹ|≤RT視為溶液處於complete random
∆Hᴹ≈∆Eᴹ=ꝑᴀᴃ[Eᴀᴃ- ½(Eᴀᴀ+Eᴃᴃ)] 考慮A-B鍵數, 相鄰位置A-B配對的機率: ℓᴀᴃ=2XᴀXᴃ
total # of bond=½N₀∙Z, ⸫ ꝑᴀᴃ=½N₀∙Zℓᴀᴃ =N₀∙ZXᴀXᴃ
∆Hᴹ=XᴀXᴃ∙N₀Z[Eᴀᴃ- ½(Eᴀᴀ+Eᴃᴃ)] compare with regular ∆Hᴹ=XᴀXᴃα
let Ω≡N₀Z[Eᴀᴃ- ½(Eᴀᴀ+Eᴃᴃ)] 鍵結能差異 → Ω=α=RTα
∆Hᴹ=ΩXᴀXᴃ=∆Gₓₛ, ∆Hᵢ=? ∆Hᴀ=Ω(1-Xᴀ)², ∆Hᴃ=Ω(1-Xᴃ)², ∆Sᴀ=-RlnXᴀ, ∆Sᴃ=-RlnXᴃ
∆Gᴀ=∆Hᴀ-T∆Sᴀ=Ω(1-Xᴀ)²-T(-RlnXᴀ) vs. ∆Gᴀ=RTlnaᴀ=RTlnXᴀ+RTlnγᴀ
⸫ RTlnγᴀ=Ω(1-Xᴀ)² → lnγᵢ=(Ω/RT)∙(1-Xᵢ)²
notes: 1. if Ω=0, Eᴀᴃ=½(Eᴀᴀ+Eᴃᴃ) → γᵢ=1 ideal solution
2. if Ω<0, ∆Hᴹ<0 exothermic, ⸪Eᵢʲ<0 ⸫ |Eᴀᴃ|>½|Eᴀᴀ+Eᴃᴃ| → γᵢ<1 negative deviation
3. if Ω>0, ∆Hᴹ>0 endothermic, ⸪Eᵢʲ<0 ⸫ |Eᴀᴃ|<½|Eᴀᴀ+Eᴃᴃ| → γᵢ>1 positive deviation
4. Henrys law: aᵢ=γᵢ⁰Xᵢ, as Xᵢ→0 γᵢ⁰=constant=eΩ/ᴿᵀ
5. regular solution重要條件需要complete random, when |Eᴀᴃ|>>½|Eᴀᴀ+Eᴃᴃ| → |Ω|鍵結能差異很大,會破壞complete random, 不適合用regular solution 模擬
6. equilibrium „configuration” of solution at fixed T, P
Equlibrium means ∆Gₘᵢₙ, ∆G=∆H-T∆S
regular: ∆Hᴹ=ꝑᴀᴃ[Eᴀᴃ- ½(Eᴀᴀ+Eᴃᴃ)], ꝑᴀᴃ=(½N₀∙Z)∙ℓᴀᴃ ℓᴀᴃ: probability of A-B bond ⸫∆Hᴹ=½ℓᴀᴃ Ω


Ex-1. Cu-Au solid solution at 873K, regular: ∆Gₓₛ,=-28280XAuXCu J/mole.
Given: pure lnpCu⁰=-40920/T-0.86lnT+21.67 pure lnpAu⁰=-45650/T-0.306lnT+10.81
ask pAu=? pCu=? at Xcu=0.6
aCu=fCu/fCu⁰=pCu/pCu⁰, aAu=pAu/pAu⁰; aᵢ=γᵢXᵢ=pᵢ/pᵢ⁰ and lnγᵢ=(Ω/RT)∙(1-Xᵢ)², 先求γAu, γCu即可得 aCu, aAu
αᵢ≡lnγᵢ/(1-Xᵢ)²=Ω/RT, αᴃ=αᴀ=α=α/RT
Ex-2. Ga-Cd liquid solution at 700K, regular: XGa=0.5, aGa=0.79. Ask Ega-Cd=?
Given: ΔHₑᵥₐₚ,Ga=270000J, ΔHₑᵥₐₚ,Cd=100000J, ZGa=11, ZCd=8
Ω≡N₀Z[Eᴀᴃ- ½(Eᴀᴀ+Eᴃᴃ)] let A=Ga, B=Cd; ΔHₑᵥₐₚ,i=½N₀∙ZEᵢᵢ → 求Eᴀᴀ, Eᴃᴃ
EGa-Ga=-8.15∙10⁻²⁰J, ECd-Cd=-4.15∙10⁻²⁰J
lnγᵢ=(Ω/RT)∙(1-Xᵢ)² 從γᵢ求出Ω, 代入Ω定義式中求EGa-Cd
γGa=aGa/XGa=1.39 → lnγGa=(Ω/RT)∙(1-XGa)² ⸫Ω=10745J Assume Z=½(ZCd+ZGa)=9.5
Ega-Cd=-5.96∙10⁻²⁰J


