Debye-Hückel theory: a way to calculate ionic activity coefficients for dilute electrolyte solutions.
Thermodynamic behavior → solution thermodynamics → constituent characteristic behavior
Activity:
(1)ideal solution ai=Ci; concentrated constituent solvent if aqueous Raoultian, H2O=Xᵢ pure s.s. (2)solute dilute solutio, C= 1M s.s., aᵢ=Cᵢ Herian
(3)activity coeff.
A. γᵢ=aᵢ/Xᵢ or aᵢ/Cᵢ<1 比較喜歡變成水溶液
B. γᵢ>1活性強, 彼此不喜歡在一起, 只是因ΔS而在一起
ex. desulfurization: 加入某種物質,使γsulfur>>1讓S活性增加,與其他元素作用, 從Fe中去掉
Chemical potential, μᵢ=μᵢº+RTlnaᵢ i.e. aᵢ=Cᵢγᵢ
Electrochemical potential, η μᵢ=ηᵢ= μᵢº+RTlnaᵢ+zᵢΔϕ
⸫μ(elec)=ηᵢ-μᵢ(chem)= μᵢ-μᵢ(chem)= μᵢ-( μᵢº+RTlnCᵢ) i.e. aᵢ=Cᵢ if ideal
⸪ μᵢ=ηᵢ= μᵢº+RTlnaᵢ=μᵢº+RTlnCᵢ+RTlnγᵢ(elec)
→μ(elec)=RTlnγᵢ(elec)=∫ ϕatmdQ, ϕ: surrounding potential(ion atmosphere)
ϕ(r)=(aϕₐ/r)∙exp[(a-r)/XA], i.e. ϕₐ=σa/ [ϵ ϵ₀(1+a/XA)] & σ=Q/4πa² a=particle size
→ϕ(r)=(Q/4πrϵ ϵ₀)∙{exp[(a-r)/XA]/(1+a/XA)}
ϕ(r)=ϕcentral+ϕatm, ϕatm=ϕ(r)-ϕcentral=(Q/4πrϵ ϵ₀)∙{exp[(a-r)/XA]/(1+a/XA)-1}, ϕcentral=Q/4πrϵ ϵ₀
at r=a, ϕatm=(Q/4πaϵ ϵ₀)∙[ XA/( XA+a)-1]=-(Q/4πϵ ϵ₀)[1/( XA+a)]
→μ(elec)=∫ ϕatmdQ=-(1/4πϵ ϵ₀)[1/( XA+a)]∫QdQ= -(zᵢ²e²/8πϵ ϵ₀)[1/( XA+a)]
lnγᵢ(elec)= -(zᵢ²e²/8πRTϵ ϵ₀)[1/( XA+a)]
ex. 電解質溶液, NaCl solution → 獲得Na⁺, Cl⁻平均mole 值ν₊和ν₋, ν=ν₊+ν₋
平均化學勢 μ±=(ν₊μ₊+ν₋μ₋)/ν
平均activity, a± μ±=μ±º+RTlna±=(ν₊/ν)(μ₊º+RTlna₊)+(ν₋/ν)(μ₋º+RTlna₋)=
(ν₊μ₊º+ν₋μ₋º)/ν+RT[lna₊ν₊/ν+lna₋ν₋/ν]=(ν₊μ₊º+ν₋μ₋º)/ν+RTln(a₊ν₊/ν∙a₋ν₋/ν)
⸫ μ±º=(ν₊μ₊º+ν₋μ₋º)/ν, a±= a₊ν₊/ν∙a₋ν₋/ν=C±γ±
a±= a₊ ν₊/ν∙a₋ν₋/ν=C±γ± → a±ν= a₊ ν₊∙a₋ν₋=C±νγ±ν → (C₊γ₊)ν₊(C₋γ₋)ν₋=C±νγ±ν ⸫C±ν=C₊ν₊C₋ν₋, γ±ν=γ₊ν₊γ₋ν₋
⸪C₊=ν₊C & C₋=ν₋C → C±ν=(ν₊C)ν₊ (ν₋C)ν₋=(ν₊ν₊∙ν₋ν₋)Cν → C±=C(ν₊ν₊∙ν₋ν₋)1/ν
γ±ν=γ₊ν₊γ₋ν₋ → 取ln, νlnγ±=ν₊lnγ₊+ν₋lnγ₋ ⸫lnγ±=(ν₊/ν)lnγ₊+(ν₋/ν)lnγ₋
lnγ±=(ν₊/ν)lnγ₊+(ν₋/ν)lnγ₋= -(e²/8πRTϵ ϵ₀)[1/( XA+a)][(ν₊z₊²+ν₋z₋²)/ν]
由於電荷平衡, |ν₊z₊|=|ν₋z₋| and ν=ν₊+ν₋
lnγ±= -(e²/8πRTϵ ϵ₀)[1/( XA+a)][(ν₊z₊²+ν₋z₋²)/(ν₊+ν₋)]= -(e²/8πRTϵ ϵ₀)[|z₊z₋|/( XA+a)]
pf: (ν₊z₊²+ν₋z₋²)/(ν₊+ν₋)=|ν₊z₊|(z₊+z₋)/(ν₊+ν₋)=|ν₊z₊|(z₊+z₋)/(ν₊+ν₋)∙|z₊z₋|/|z₊z₋|
=[|ν₊z₊|(z₊+z₋)/(ν₊|z₊z₋|+ν₋|z₊z₋|)]∙|z₊z₋|=[|ν₊z₊|(z₊+z₋)/|ν₊z₊|(z₋+z₊)]∙|z₊z₋|=|z₊z₋|
簡化 lnγ±= -A|z₊z₋|I½/(1+BaI½)= -0.05092|z₊z₋|I½/(1+3.29aI½) i.e. I=½Σzᵢ²Cᵢ


