Contents ...
udn網路城邦
氣體行為
2017/11/06 16:23
瀏覽2,246
迴響0
推薦0
引用0

Chapter 8 The Behavior Of (non-ideal) Gases

*狀態方程式: V=RT/P ideal gas vs. V=f(T,P)=? real gas

*G-P關係: ideal gas dG=RTdlnP

non-ideal gas: fugacity(逸壓, f) dG=RTdlnf, fP

P-V-T relationship  limPV/RT --> 1  as P --> 0                 

實驗上

真實氣體:1. Tcr以上,還保持PV=constant曲線, 2. Tcr以下,進行壓縮,V則會出現兩相區域, 使氣體凝結成液體,變成等溫線出現反曲點;高溫Tcr以上, 作等溫壓縮卻不液化即液態與氣態無法分別

壓縮係數 Z=PV/RT ideal gas Z=1; real gas Z=1+?

在低壓下 0~10 atm 可表成Z=mP+1, m<0 font="" face="Times New Roman, serif">→ P(V-mRT)=RT or P(V-b’)=RT 式中b’不為粒子之体積, b’<0 font="" face="Symbol, serif">純粹為一實驗方程式(實驗走不通,換理論探討)

理論: Van der Waals gas

ideal gas特性: U=U(T), H=H(T), U=E, 氣體分()子不佔體積,()子間無作用力

修正:1. 氣体分子佔有体積, 2. 分子間有交互作用力

Van der Waals gas 方程式 (P+a/V²)(V-b)=RT

粒子間吸力使氣体壓力低於沒有吸力時之壓力所以(P+a/V2)當氣体視為理想時所作用之壓力

如何求 a=? b=? (實際值要靠實驗的Tcr, Pcr, Vcr)

T=Tcr, P-V圖有反曲點: (P∕∂V)Tcr=0, (∂²P∕∂V²)Tcr=0

P=RT/(V-b)-a/V² (P∕∂V)=-RT/(V-b)²+2a/V³=0, (∂²P∕∂V²)=-2RT(V-b)/(V-b)⁴-6a/V=0

Vcr=3b, Tcr=8a/27Rb Pcr=a/27b² or b=Tcr/8Pcr, a=9RTcrVcr/8=3PcrVcr²

V=f(T,P)=? 靠實驗量測, virial eq. Z=1+aP+bP²+cP³+...=1+a/V+b/V²+c/V³+...

結論: 當壓力不是很大,都看成理想氣體, PV=RT

Vapor pressure of condensed liquid, Pₛₐₜ

*T Tcr Hvap0, proof by thermodynamics

l g evaporation,Hvap=Hv-Hl=Uv-Ul+P(Vv-Vl) i.e. HU+PV

dU=TdS-PdV → (U∕∂V)=T(∂S∕∂V)-P=T(∂P∕∂T)-P, P=RT/(V-b)-a/V²→(∂P∕∂T)=R/(V-b)代入上式 (U∕∂V)= T[R/(V-b)]-P=P+a/V²-P= a/V² --> U=-a/V+constant

Hvap=Uv-Ul+P(Vv-Vl)=-a/Vv+a/Vl+P(Vv-Vl)

T Tcr VvVl , Pv= Pl Hvap0

Virial方程式 PV/RT=1+BP+CP²+... or PV/RT=1+B/V+C/V²+... 低壓時

§氣體狀態改變時的G? dG=-SdT+VdP At fixed T, dG=VdP,

理想氣體dG=RTdP/P=RTdlnP, G(P,T)-G(P,T)=RTln(P/P), G=RTln(P/P)

Real gas: fugacity, f逸壓, dGRTdlnf fP and fP; as P0, 氣體趨近ideal gas, f/P1

real gas 一氣體偏離ideal gas, 考慮gas滿足α=V-Vᵉ=RT/P-V 方程式α=α(T)

定溫下dG=VdP=RTdlnf → VdP=RTdlnf → (RT/P-α)dP=RTdlnf

RTdlnP-RTdlnf=αdP → dln(f/P)=-αdP/RTln(f/P)=∫₀-α/RTdP

溫度T, P=0~P=P之間ln(f/P)P=P-ln(f/P)P=0=-αP/RT i.e. ln(f/P)P=0=ln1=0

ln(f/P)=-αP/RT → f/P=e-αP/RT

if α<<1 span="">, e-αP/RT1- αP/RT f/P=1- αP/RT=1-(RT/P-V)P/RT=PV/RT

*calculate f from gas eq. Z=Z(P)=1+aP+bP²+cP³+...若氣體為ideal gas, P可視為RT/V, f/P=Pideal/P=1

dln(f/P)=-αdP/RT=(V/RT-1/P)dP= 1/P(PV/RT-1)dP=(Z-1)dP/P

ln(f/P)=∫₀(Z-1)dP/P 等溫下壓力改變, dG=VdP or dG=RTdlnf

e.g. N at T=273.16K=0, PV=22414.610.281P + 0.065189P² + 5.1955×10⁻⁷P1.3156 ×10⁻¹¹P+1.009×10⁻¹⁶P⁸=a+bP+cP²+nP⁴+eP⁶+gP

Q1: when P=100 atm, f=?

Z=PV/RT=1/RT(a+bP+cP²+nP⁴+eP⁶+gP)=1+1/RT∙(bP+cP²+nP⁴+eP⁶+gP⁸), RT=22414.6

(Z-1)/P=1/RT∙(b + cP + nP³+eP+gP)

∫₀¹⁰⁰dln(f/P)=∫₀¹⁰⁰(Z-1)dP/P=1/RT∙(bP+cP²/2+nP⁴/4+eP⁶/6+gP⁸/8)

, ln(f/100)=...=-0.03084 ⸫ f=96.96≈97 atm when P=100 atm, 3% error only,

Q2: P change from 1 to 150 atm, check G=?, ∆G=?

G= ∫₁¹⁵⁰RTdlnP=RTln(150/1)=112311 atmcm³=11373 J

∆G=RTdlnf=VdP=∫(a/P+b+cP+nP³+eP+gP)dP=alnP+bP+cP²/2+nP⁴/4+eP⁶/6+gP⁸/8)

=111490 atm∙cm³=11297J

G-∆G=76J, ~0.7% error

Topics: *given Z=1++aP+bP²+cP³+... f=? ∆G=? ∆W=?

e.g. Z=PV/RT=1+BP, calculate ∆W by (i) P₁→P₂ (ii) V₁→V₂ (iii) compare with ∆W

(i) ideal gas ∆Wᵈ=∫PdV=∫P(-RT/P²)dP=RTln(P₁/P₂), V=RT/P ⸫dV=(-RT/P²)dP

∆Wᵉ=∫PdV=∫P(-RT/P²)dP=RTln(P₁/P₂), ⸪ V=RT(1+BP)/P→dV=(-RT/P²)dP

(ii) ∆Wᵈ=∫PdV=∫(RT/V)dV=RTln(V₂/V₁), ∆Wᵉ=∫PdV=∫RT/(V-BRT)dV=RTln[(V-BRT)/(V-BRT)]

PV/RT=1+BPP(V/RT-B)=1P=RT/(V-BRT)

Ex. 假設氣體遵守PV/RT=Z=1+BP+CP²+... Virial方程式 → V=RT(1/P+B+CP+DP²)

ΔG=ᴘ₁ᴘ₂VdP=∫RT(1/P+B+CP+DP²+...)dP=RT[ln(P₁/P₂)+B(P₂-P₁)+C/2(P²-P²)+D/3(P³-P³)]

if ideal gas, dG=RTln(P₁/P₂)

非理想氣體之額外自由能變化=RT[B(P₂-P₁)+C/2(P²-P²)+D/3(P³-P³)]

ln(f/P)=∫₀(Z-1)dP/P =∫₀(B+CP+DP²+...)dP=BP+CP²/2+DP³/3+...

dG=RTdlnf → dG=RTdlnf/P+ RTdlnP

ΔG=RT[B(P₂-P₁)+C/2(P²-P²)+D/3(P³-P³)]+RTln(P₁/P₂)

real gas:

(1)Virial function PV/RT=1 in 0~6 atm,

(2)PV/RT=1+BP in 0~20 atm V=RT/P+BRT α=-BRT

作功方面

ideal gas: V=RT/P, real gas: V=RT/P+BRT ideal gas平移一距離

(1)等溫 P1P2

ideal gas w=ᴠ₁ᴠ₂PdV=∫RTdV/V=RTln(V₂/V₁)=RTln(P₁/P₂)

非理想氣體 w=ᴠ₁ᴠ₂PdV=∫-RTdP/P=-RTln(P₂/P₁)=RTln(P₁/P₂), i.e. V=RT/P+BRT → dV=-RTdP/P²

(2)V1膨脹至V2的功

wₑₐₗ=ᴠ₁ᴠ₂PdV=RTln(V₂/V₁) vs. wᵣₑₐₗ=ᴠ₁ᴠ₂PdV=ᴠ₁ᴠ₂RTdV/(V-BRT)=RTln[(V₂-BRT)/(V₁-BRT)]>wₑₐₗ

氣體方程式: ideal gas PV=RT, van der Waals gas (P+a/V²)(V-b)=RT,

virial eq. Z=PV/RT=1+aP+bP²+cP³+... or Z=PV/RT=1+a/V+b/V²+c/V³+...

Ex-1. 1 mole N 氣體方程式: P=RT/(V-b)-a²/V², a=1.39 b=39.1

Q: at 400K, V=1 l V₂=2 l G=?, ∆S=?

G=²dG=ᴘ₁ᴘ₂VdP=ᴠ₁ᴠ₂?dV, P=RT/(V-b)-a²/V²

dP=[R/(V-b)]dT-[RT/(V-b)²]dV+2a²/V³dP=[R/(V-b)]dT+[2a²/V³-RT/(V-b)²]dV

at fixed T, G=dG=VdP=V[2a²/V³-RT/(V-b)²]dV=-2a²/V-V RT/(V-b)²]dV

i.e. let V-b=x, dV=dx V RT/(V-b)²]dV=RT(x+b)/x²]dx=(RT/x)dx+∫(RTb/x²)dx

G=-2a²/V+RTln(V-b)-RTb/(V-b)代入a, b, T, V₁, V G=-2636J

S=? S=S(T,V) 2nd TdS eq. dS=(c/T)dT+(α/β)dV 但不一定記得!

dS=(S∕∂T)dT+(S∕∂V)dV=(S∕∂V)dV=(P∕∂T)dV at fixed T

(∂P∕∂T)ᵥ=R/(V-b) dP=[R/(V-b)]dT+[2a²/V³-RT/(V-b)²]dV

S=dS=(P∕∂T)dV=[R/(V-b)]dV=Rln[(V-b)/(V-b)]=5.93

Ex-2. 異丁烷氣體: Z=1+A/V+B/V² A=-265, B=30250

Q: at 460K, V=400 c.c. V₂=200 c.c. G=?

G=dG=-SdT+VdP=VdP=∫?dV

Z=1+A/V+B/V²=PV/RT P=RT(1/V+A/V²+B/V³) → dP=RT(-1/V²-2A/V³-3B/V)dV代入上式

G=VdP=VRT(-1/V²-2A/V³-3B/V)dV=-RT[lnV-2A/V-3B/2V²]=838J

Q2: P₁=50 atm → P₂=100 atm, ∆W=?

W=∫δW=∫PdV=∫RT(1/V+A/V²+B/V³)dV=RT(lnV-A/V-B/2V²)

P₁, P代入Z=1+A/V+B/V²=PV/RTV=394.6 c.c., V₂=176.9 c.c. 代入積分 W=-1384J

**在題目中由氣體方程式找dP=....dT+....dV的關係或是P=P(T,V)

全站分類:知識學習 隨堂筆記
自訂分類:材料科學
上一則: Potential-pH diagram
下一則: 單元系統中相平衡
你可能會有興趣的文章:
發表迴響

會員登入