Contents ...
udn網路城邦
單元系統中相平衡
2017/11/06 16:19
瀏覽1,331
迴響0
推薦0
引用0

Chapter 7 Phase Equilibria In A One Component System

系統的内涵性質,另一類勢的測量, ex. 溫度、壓力、化學勢…

1. 溫度: 系統内勢or熱強度一種測量

熱離開系統的傾向, 例如高溫低熱,有一gradient存在,直到熱流消失,溫度相等,熱平衡為止。

2. 壓力: 系統内質量移動的傾向

ex. 相之間有淨壓力時,質量移動使壓力gradient抵消, 使系統内不同部份,壓力彼此相等。

3. 一相內的成分(component) i的化學勢

測量成分i離開該相的傾向大小;種類i傾向從高化學勢的相移出而轉入較低化學勢的相。”potential gradient” 化學擴散的驅動力,直到化學勢μi在不同的相均相等,平衡才成立。

dG=-SdT+VdP+μᵢdnᵢ

材料熱力學從能量的觀點,探討物質的變化

§thermodynamic equilibrium, e.g. α, and β phases co-existed at fixed T, P

thermal equil. Tα=Tβ , mechanical equil. Pα=Pβ, chemical equil. μα=μβ

at equilibrium, G=Gₘᵢₙ dG=0 GH-TS 欲知G(T)=? H(T)=? S(T)=? at P(=1 atm) 進一步了解 Gα(T)=? Gβ(T)=?

at T=T₀, if Gα(T)<Gβ(T), reaction: βα, α stable.

If Gα(T)=Gβ(T), reaction: βα, α+β phases co-existed, T₀:相轉換溫度

7-2 研究G-T-P的關係式來討論平衡

若維持在1atm, 0℃時冰水平衡 HO₍ₗ₎ ↔ HO₍ₛ₎ at 1atm, 273K

T>273K, G₍ₛ₎>G₍ₗ₎ liquid stable.

T=273K, G₍ₛ₎=G₍ₗ₎ liquid+solid stable. ←討論點!

T<273K, G₍ₛ₎<G₍ₗ₎ solid stable.

若含n mole水和n mole: G=nG₍ₛ₎+nₗG₍ₗ₎=contant at Tₘ, 其冰水比例無關(i.e. n+nₗ=c)

可以說: 平衡時, H2O從液相中脫離傾向等於固相中的脫離傾向。

定溫定壓下, G,=μnₛ+μnₗ→比較G=nG₍ₛ₎+nₗG₍ₗ₎ vs. G,=μnₛ+μₗnₗ

molar Gibbs free energy, μᵢ≡(G∕∂nᵢ)ᴛ,ᴘ,nj=G

如何求G₍ₛ₎(T), G₍ₗ₎(T)? given: cₚ₍ₛ₎=38J/Kmole, cₚ₍ₗ₎=75.44J/Kmole, ∆Hₘ=6008J/mole. At 298K, H₍ₛ₎=-6944, S₍ₛ₎=44.77; H₍ₗ₎=0, S₍ₗ₎=70.08

通式: H(T)=H₂₉₈+∫₂₉₈cₚdT, S(T)=S₂₉₈+∫₂₉₈(cₚ/T)dT H₍ₛ₎(T)=..., S₍ₛ₎(T)=..., H₍ₗ₎(T)=..., S₍ₗ₎(T)=...

G₍ₛ₎(T)=H₍ₛ₎(T)-TS₍ₛ₎(T)=f₍ₛ₎(T), G₍ₗ₎(T)=H₍ₗ₎(T)-TS₍ₗ₎(T)=f₍ₗ₎(T)

1. ΔH, let H298(l)=0

H₍ₗ₎,=₂₉₈cₚ₍ₗ₎dT=75.44(T-298)=75.44T-22481,

H,=₂₉₈²⁷³cₚ₍ₗ₎dT-ΔHₘ+₇₃cₚ₍₎dT=75.44(273-298)-6008+38(T-273)=38T-18268

ΔH=H₍ₗ₎,-H,=75.44(T-298)-75.44(273-298)+ΔH-38(T-273)=37.44T+4231.12

2. TΔS

S₍ₗ₎,=S₍ₗ₎,₂₉₈+₂₉₈cₚ₍ₗ₎dlnT=70.08+75.44ln(T/298),

S,=S,₂₉₈+₂₉₈cₚ₍₎dlnT=44.77+38ln(T/298)

ΔS=S₍ₗ₎,-S,=25.31+37.44ln(T/298)

As ΔH₎= Tm ΔS 37.44T+4231.12=25.31T+37.44Tln(T/298) Tm=?

3. G₍ₛ₎(T)=H₍ₛ₎(T)-TS₍ₛ₎(T)=38T-18268-T[44.77+38ln(T/298)]=18268-6.77T+38Tln(T/298)

G₍ₗ₎(T)=H₍ₗ₎(T)-TS₍ₗ₎(T)= 75.44T-22481-T[70.08+75.44ln(T/298)]=22481+5.36T+75.44Tln(T/298)

ΔG(T)=G₍ₗ₎(T)-G₍ₛ₎(T)=4213+12.13T+37.44Tln(T/298)

as T<0, G₍ₛ₎<G₍ₗ₎ solid stable;

T=0℃, liquid+solid stable.(melting point)

consider slG=Gₗ-G

(i) T<Tₘ, ∆G>0

(ii) T=Tₘ, ∆G=0

(iii) T>Tₘ, ∆G<0

重點討論 G? G<0, reaction! (Any transformation)

G=H-TS at Tₘ, ∆H=Hₘ>0 and ∆S=Sₘ>0 表示溫度上升,G會下降(S contribution is more important at high temperature.)

G(T), G(T)curve shape? monotonic change

dG=-SdT+VdP (G∕∂T)ₚ=-S<0代表函數的斜率, (∂²G∕∂T²)ₚ=-(∂S∕∂T)ₚ=-cₚ/T<0代表函數的曲率

e.g. slGₛₗ=∆Gₘ=Gₗ-G(∂∆Gₘ∕∂T)ₚ=-∆Sₘ<0, (∂²∆Gₘ∕∂T²)ₚ=-(∂∆Sₘ∕∂T)ₚ→0 *Richards rule ∆Sₘ=c

G(P), G(P)curve shape?

At fixed T, (G∕∂P)=V>0斜率, (∂²G∕∂P²)=(∂V∕∂P)=-βV<0曲率

e.g. sl (∂∆G∕∂P)=∆V=Vₗ-Vₛ>0 usual cases, but ∆V=Vₗ-Vₛ<0 for H₂O

(∂²∆G∕∂P²)=(∂∆V∕∂P)=-(βVₗ-βVₛ)→0

§Phase equilibrium(transformation) T(P)?

e.g. sl Tₘ(P)=? or l g T(P)=? consider sl Gₗ=Gₛ at Tₘ ⸫ dGₗ=dG

dGₛ=-SdT+VdP, dGₗ=-SdT+VdP → d(Gₗ-Gₛ)=-(Sₗ-Sₛ)dT+(Vₗ-Vₛ)dP dG=-SdT+VdP

G=0 at Tₘ, -SdT+VdP=0

(dP/dT)զᵤᵢₗ=S/V=∆Hₘ/Tₘ∆V...clapeyron eq. i.e. G=H-Tₘ∆S

e.g. sl for H₂O, ∆Hₛₗ>0, ∆Sₛₗ>0but ∆V=Vₗ-Vₛ<0 ⸫ (dP/dT)<0 P Tₘ↓ 例如溜冰時體重施在冰上的壓力會使冰溶化(從理論上冰會因壓力上升而融化,但實際上加壓為瞬間,並未發現冰鞋有水,可能與冰的表面情況有關)

condensed phase transition, α β Tαβ(P) ?

Clapeyron Eq. (dP/dT)զᵤᵢₗ=S/V=H/TV, V=Vβ-Vα, S=Sβ-Sα

∫₁dP=ᴛₘ(∆S/V)dT(∆S/V)(T-T),

e.g. Sₘ>0 and ∆V=Vₗ-Vₛ <0 for H₂O, but ∆V>0 for usual cases.

§solid(liquid) ↔ vapor(gas) phase transition

(dP/dT)զᵤᵢₗ=S/V=H/TV, V=Vg-Vs≡Vg or Vg-Vl≈ Vg=RT/P

(dP/dT)≈∆H/TVg=PH/RT² dlnP=(H/RT²)dT...clausius-clapeyron eq.

積分 ∫₀dlnP=(∆H/RT²)dT lnP=? f(T)

e.g. l g given: H, T ; ∆H(T)=H+cₚdT, ∆cₚ=c,g-c,l=f(T)=? cₚ=∆a+∆bT+∆c/T²

a. ∆H=H , if ∆cₚ=0 lnP=-H/R(1/T-1/T)=-H/RT+c₀ ⸫ lnP=-H/RT

b. ∆cₚ=∆a=c常數, H=H+c(T-T) lnP=([∆H+c(T-T)]/RT²)dT= (cT-∆H)/RT+(c₀/R)lnT+C lnP=A/T+BlnT+C₀, i.e. H=(∆H-cT)+cT

c. ∆cₚ=∆a+∆bT+∆c/T²

e.g. H₂O, c,l=75.44, c,g=30+10.7∙10⁻³T+0.33∙10⁵T⁻², T=373K, ∆H=41090J

P(T)... vapor pressure of water(l g)

H(T)=H+cₚdT=41090+∫(-45.44+10.7∙10⁻³T+0.33∙10⁵T⁻²)dT=(41090+45.44∙373-5.35∙10⁻³ 373²+0.33∙10⁵/373)-45.44T+5.35∙10⁻³T²-0.33∙10⁵/T 代入∫₀dlnP=(∆H/RT²)dT

lnP=-52383/RT-45.44lnT/R+5.35∙10⁻³T/R+0.33∙10⁵/2RT²+51.1

ex. c,H₂O₎=30+10.7∙10⁻³T+0.33∙10⁵T⁻² , 298~2500K; c,H₂O₎=75.44, 273~373, H=41090

ΔH=ΔH₃₇₃+₃₇₃c₍ₗᵥ₎dT, dlnP=(ΔH/RT²)dT

lnP=-58872/RT-(45.44/R)lnT+(5.35∙10⁻³/R)T+(0.33∙10⁵/2R)T⁻²+C,

B.C.: P(373K)=1 atm C=?(51.092)

固液相平衡dP/dT=ΔHf/TΔVf , 斜率AOA’ dP/dT=PΔH/RT²*OA’gas為介穩態,在相同的 T, P ,有較高的G

一元三相圖中如何畫G-T, G-P變化曲線?

G-T curves at fixed P

G-P curves at fixed T

solid phase transition: e.g. Fe: α(BCC)γ(FCC)δ(BCC)l different crystal structures: allotropes同素異形體, compound ZrO: monoclinic → tetragonal → cubic → l, polymorphism多形體

補充: slope of phase change, α β

e.g. Fe α(BCC) → γ(FCC) V=V(FCC)-V(BCC)<0 (dP/dT)զᵤᵢₗ=S/V<0

γ(FCC) → δ(BCC) V=V(BCC)-V(FCC)>0 (dP/dT)զᵤᵢₗ=S/V>0

phase diagram:

for l g logP=A/T+BlogT+C, s g logP=A/T+BlogT+C

at triple point, P=P A/T+BlogT+C=A/T+BlogT+C

Gibbs Phase rule f=c-P+2

e.g. one component, c=1 f=3-P (I) one phase region: P=1 f=2 (ii) two phases curve: P=2 f=1 (iii) 3 phaes coexist: P=3 f=0 (triple point)

該系統有P個相, Cchemical species; 前提(1)沒有化學反應發生, (2)每種成分在每一相均存在. 根據(2), PCmole fractions, 再加上T, P PC+2 intensive variables.

a. 在每相中,例如α相中 xα+xα+xα+xα+...+xα=1,P個相P個方程式, 可限制P個變數

b. 在各相間同種的μi要平衡時均相同

μαβγ=..., μαβγ=..., μαβγ=...P-1個等式共有C(P-1) 個方程式

f=PC+2-P-C(P-1)=C-P+2

在兩相存在區, OAor OB, OC: f=1-2+2=1個自由度(PT) P固定, T即固定。

三相點 f=1-3+2=0

Ex=1. NaF s g lnP=-34450/T-2.01lnT+33.74...(1)

l g lnP=-31090/T-2.52lnT+34.66...(2)

Q1: T=? Boiling at P=1 atm

P=1 atm, ln1=0=-31090/T-2.52lnT+34.66 T=2006K

Q2: Tₜ=? Pₜ=?

P=P, (1)=(2), -34450/T-2.01lnT+33.74=-31090/T-2.52lnT+34.66, -3360/T+0.51lnT-0.92=0 Tₜ=1239K代入(1)(2), Pₜ=2.29∙10⁻⁴ atm

Q3: ∆H=?

dlnP=(H/RT²)dT H=RT²(dlnP/dT)=RT²[31090/T²-2.52/T]=258500-20.95T=216500J

Q4: when T=Tₜ, ∆Hₛₗ=?

Hₛₗ=Hₗ-Hₛ=Hₗ-Hg+Hg-Hₛ=-(Hg-Hₗ)+(Hg-Hₛ)=-∆Hₗg+∆Hₛg, Hₗg=H= 258500-20.95T, ∆Hₛg=RT²(dlnP/dT)=RT²[34450/T²-2.01/T]=286417-16.71T

Hₛₗ=-( 258500-20.95T)+286417-16.71T=27917+4.24T=33170J

Q5: ∆cₚ=cₚ₍₎-cₚ₍₎=?

H(T)=∆H(T₀)+∫ᴛ₀cₚdT ↔ ∆cₚ=(d∆H/dT)=4.24

Ex-2. cabon(graphite) → diamond at 298K, P≥?

Given: H=1900J/mole, Sg=5.73J/Kmole, S=2.43J/Kmole, ρg=2.22g/cm³, ρ=3.515g/cm³

concept: at fixed T, how much P is big enough to make reaction spontaneous(G≤0)?

dG=-SdT+VdP, (∂∆G∕∂P)ᴛ=∆V, ∆G=G-Gg=(H-Hg)-T(S-Sg)=(1900-0)-298(2.43-5.73)=2883J

at fixed T, ₂₈₈₃d∆G=∫VdP G₀-2883=∆V(P-1)=(M/ρ-M/ρg)(P-1)=-1.99(P-1)∙0.101

G₀=-0.201138(P-1)+2883≤0, P≥14334 atm

全站分類:知識學習 隨堂筆記
自訂分類:材料科學
上一則: 氣體行為
發表迴響

會員登入