Contents ...
udn網路城邦
固態擴散
2017/10/17 10:00
瀏覽1,469
迴響1
推薦0
引用0

Diffusion

A review of diffusion: 1. law of diffusion: Fick’s 1st law, Fick’s 2nd law

1st law J=-Dc/x, “-“決定濃淡方向; c/x: concentration gradient

J: atoms/cm2sec (flux), x: cm, c: atom/cm3, D: cm2/sec

*single phase: 只考慮單純系統,若有共析相等產生,1st law須修正

Atomic meaning of D (p.37, TIM): considering two adjacent atomic planes containing n1 and n2 solute atoms per unit area and separated by a distance α.

No. of solute atoms jumping from plane 1 to plane 2 per unit area in time δt, Γδtn/6-Γδtn/6=Jδt,

: jumping frequency(an atom jumping to nearest adjacent site)與振動頻率有關

if one dimension: 1/6 1/2


Γ=rexp(-Ei/kT)exp(Δs/k), r: 可供最大利用的空位位置數

Γn/6-Γn/6=J, but n/α=c and n/α=c where n: atom/area, α: jumping distance spacing between plane 1 and 2. J=Γα(c₁-c)/6

On a macroscopic scale c varies continuously with x: c₂= c₁+(∂c/∂x)tα

thus J=-Γα²(∂c/∂x)t/6↔J=-D(∂c/∂x)t, i.e. D=Γα²/6 for 3-D

Ficks 2nd law (non-steady state: c may change with time)

c/∂t=∂(D∂c/∂x)/∂x if D is not a function of c ∂c/∂t=D∂²c/∂x², D=constant

Derivation of Fick’s 2nd law assuming Fick’s 1stlaw is valid

No. of atom of solute entering element ∆x in time δt

JAδt-JAδt=AΔxδc J-J=Δx(∂c/∂t)…(1)

but J varies continuously with x, therefore J=J₁+Δx(∂J/∂x)…(2)

combining (1) & (2) ∂c/∂t=-∂J/∂x, but J=-Dc/x and ∂c/∂t=∂(D∂c/∂x)/∂x

→ ∂c/∂t=D∂²c/∂x²=D²c

Solution to Fick’s 2nd law

ex-1 Sinusoidal concentration gradient, c(x,0)=c+βsin(πx/l) (initial condition)

c(x,y)=c+βsin(πx/l)exp(-Dtπ²/l²)=c+βsin(πx/l)exp(-t/τ)

where τ=l²/²=relaxation time=time for a 63.2% decrease in amplitude at t=τ

*homogenization事實上不能完全達到,須定一極限 t=l²/² effective diffusion time, on other case t=l²/4D effective diffusion time effective diffusion distance x=(π²Dt)1/2, on other case x=(4Dt)1/2

ex. 2 thin film solution

c0 for x0, c for x=0 ₋∞c(x,t)dx=α

In practice, a 5cm bar serve as an infinite bar c(x,t)=[α/2(πDt)1/2]e-x²/4Dt

2. Atomic theory of diffusion

a. Random nature of diffusion (DIS p.47-57)

p: probability that atom jumps to right(1-p: left)

n: total No. of jumps=t, k: No. of jumps to right, n-k: No. of jumps to left

i: final position of atom=k-(n-k)=2k-n

x=ia : final distance from origin where a spacing between atoms

Probability that an atom will make k jumps to right in n jumps and end up at i position. p(i)=p(k)=(n!/[k!(n-k)!])p(1-p) for large n

p(i)=p(k)(1/[2πnp(1-p)]1/2)exp[-½{(k-np)/[np(1-p)]}²]

for random walk in the absence of p=½ p(i)=[2/πn]1/2exp[-½{(k-n/2)/(n/4)1/2}²]

but k=n/2+i/2 and p(i)=[2/πn]1/2exp[-½{i/(n)1/2}²]=[2/πn]1/2exp[-i²/2n]

but x=ia and n=t, where : jumping frequency at t

p(i)=[2/πt]1/2exp[-x²/2a²t] for diffusion in one dimension, D=Γa²/2

p(i)=p(x,t)=[2/πt]1/2exp[-x²/2a²t]=a[2½/½πt]1/2exp[-½(½x²/½a²t)]

p(x,t)=a/(πDt)1/2exp[-x²/4Dt)] : the probability of finding a B atom at x and t.

p(x,t) is equal to the atomic fraction of B atoms, XB at x and t.

XB(x,t)=a/(πDt)1/2exp[-x²/4Dt)] atoms per unit length in 1-D problem corresponds to atoms per unit volume in 3-D problem.

also XB=NB/N where NB= No. of B atoms/area and N= No. of atoms/area

NB (x,t)/a=N/(πDt)1/2exp[-x²/4Dt)] but N=α and NB/a=cB cB (x,t)=α/(πDt)1/2exp[-x²/4Dt)]

b. Mechanisms (DIS p.43-46): Interstitial diffusion—C, H, N in Fe, Vacancy diffusion—all substitutional solid solutions

c. Vacancy Diffusion(DIS P.55-57)

equilibrium concentration of point defects Nve=e-G/kT

Nv: molar fraction of vacancy, Nve: probability that a vacancy will exist a certain lattice site, ∆Gv: ∆Gv =∆Hv -TSv ,free energy of formation a vacancy

d. Atomic meaning of D for a simple cubic structure: D=Γα²/6

for interstitial mechanism: D=Γα²/6 , Γ=vexp(-ΔGm/kT) D=(α²v/6)exp(-ΔGm/kT)

for vacancy mechanism: Γ=ωp=ωNve=ωe-G/kT

therefore D=Γα²/6=α²ωe-G/kT/6=α²ve-ΔGm/kTe-G/kT/6

D=De-Q/kT, Q: activation energy for diffusion

Dsenergy barrierDi多∆Gv這一項 Di > Ds

e. experimental techniques for measuring Dv

radioactive tracer method

a. plate tracer on surface of semi-infinite solid

b. diffuse trace at some temperature

c. measure tracer activity as a function of depth of penetration

d. plot log of activity vs. the square of the depth

e. slope of graph is 1/4Dt

the solution of above core: c (x,t)=α/2(πDt)1/2exp[-x²/4Dt)]

lnc (x,t)=ln[α/2(πDt)1/2]-x²/4Dt, c(x,t) radioactivity counts

Kirkendall effect(diffusion in a concentration gradient) p.115 DIS

不是由grain boundarylattice point擴散vacancy,是藉dislocation來消除、減少,維持平衡濃度

B. High diffusion paths(chapter 6 DIS)

Region in crystalline solids where the diffusion rate is faster than that in the crystal lattice itself.

1. type of high diffusion path: dislocation, grain boundary, free surface提供atom克服Gm的能量

2. experimental observation:

D=De-Q/kT

a. higher than expected diffusivity in polycrystal at low temperature.

b. tilt boundary diffusivity

3. Mechanism

a. dislocation: stress field—high vacancy concentration, higher diffusivity

Nv=e-Q/kT vs. Nvd=e(-Q/RT+σV/RT) Nvd >Nv

b. grain boundary diffusion: low angle boundary same as dislocation, high angle boundary similar to low angle but cannot mathematically described.

c. free surface: unknown possibly ledges

4. Theories

a. Grain boundary diffusion (Fisher’s model)

grain boundary is perpendicular to the specimen surface has a width δ and a diffusivity Db.

Concentration change in box from solute (tracer) diffusion down the G.B. in y direction per unit time: V=l·δ·dy (volume of box)

[Jyδl-(Jy+dy∙∂Jy/y)∙δl]/l·δ·dy

Concentration change in box from solute (tracer) diffusion out the sides of the box in x direction per unit time: -2Jxδl/l·δ·dy

total concentration change per unit time in box:

c/∂t=[Jyδ∙l-(Jy+dy∙∂Jy/∂y)δ∙l]/l·δ·dy-2Jxδl/l·δ·dy ∂c/∂t=-Jy/∂y-2Jx/δ…(1)

the flux Jy and Jx are given by Fick’s 1st law:

Jy =-Db(c/∂y) and Jx=-Dv(cv/∂x)…(2) substituting these into eq. (1) gives

cb/∂t=Db(∂²cb/∂y²)+2Dv(cv/∂x)/δ|x=δ/2…(3a) G.B. diffusion

also ∂cv /∂t=Dv[(∂²cv/∂x²)+(∂²cv/∂y²)]…(3b) volume diffusion

note: above derivation assumes that there is no concentration gradient across the boundary.

Fisher’s solution

B.C. c=c0 for y=0 and t≥0, c=0 for y>0 at t=0

assumptions:

1. a steady state is reached quickly and then maintain in the boundary, ∂cb/∂t=0

i.e. cb(y) concentration profile in the boundary is reached quickly and maintain unchanged with time.

B.C. cv=cb(y) for x=0 and t≥0, c=0 for x>0 at t=0

c(x,y,t)=cb(y)(1-erf[x/2(Dvt)1/2])…(4), i.e. erf(x)=(2/π)xe-t²dt

the diffusion equation for grain boundary diffusion is t123

cb/∂t=Db(∂²cb(y)/∂y²)+2Dv(cv/∂x)/δ|x=δ/2 from assumptions ∂cb/∂t=0

Db(∂²cb(y)/∂y²)+2Dv(cv/∂x)/δ|x=δ/2 =0 solution of the eq. for cb(y)

from eq. (4) c(x,y,t)=cb(y)[1-(2/π)x/2(Dvt)1/2 e-y²dy]

for constant t, c(x,y,t)=cb(y)[1-(2/π)xe-x²/4Dvtdx/2(Dvt)1/2

→ ∂c(x,y,t)/∂x=-(2/π)[cb(y)/2(Dvt)1/2]e-x²/4Dvt at x=0 c/∂x|x=0=-cb(y)/(πDvt)1/2

substituting into eq. (3a) Db(∂²cb/∂y²)+2Dv[-cb(y)/(πDvt)1/2]/δ =0

assume that solution is of the form cb(y)=me-ny then ∂²cb/∂y²=mn²e-ny

substituting Db(mn²e-ny)-2Dv/δ(πDvt)1/2[me-ny] n²=2Dv/Db δ(πDvt)1/2

cb(y)= …(5)

applying that B.C. that c=c0 at y=0 requires that m=c0 and

cb(y)= substituting

c(x,y,t)=

擴散: 原子遷移的微觀過程及其引起的宏觀現象,例如: 相變化,氧化, 脫碳, 滲碳, 燒結, 均勻化,潛變.

1st Ficks law:原子從高濃度向低濃度區域流動

J=-D(c/x), 單位時間通過某一截面的量, Jc/x的方向相反, D:比例係數

J, D, c/∂x可以是常數,也可以是變數.

如圖: ⸪ ∂c/∂x|₁>∂c/∂x|dₓ ⸫ J(x₁)>J(x₁+dx)

dx的體積中濃度變化速率, c/∂t → ∂c/t|₁∙dx=J(x₁)-J(x₁+dx)...(1)

if dx→0, J(x₁+dx)=J(x₁)+∂J/∂x|₁∙dx...(2), 比較(1)(2)

→ ∂c/t=-J/∂x=-∂/∂x(-D(c/∂x)), ∂c/t=D∂²c/∂x²...2nd Ficks law

擴散方程式的應用

(i)穩定擴散, steady state, c/t=0 不隨時間改變, 因此J/∂x=0, J=A

ex. 測定1000退火γ鐵中碳的擴散係數D, 半徑r的薄壁鐵管,管外保持滲碳濃度c, 管內保持脫碳濃度c₂;c₁>c₂, 經過長時間,管壁中的濃度不隨時間變化, c/t=0 q/t=Bq: 流進或流出的總碳量, J=q/(2πrLt)=-Dc/∂r

q=-D(2πLt)∙∂c/∂lnr, clnr作圖求斜率可得D, 由於 q/t=B為一常數,D不隨濃度改變, 那麼c/∂lnr也是常數, 作圖會得一直線!

但實驗指出高濃度區域斜率較小,所以D較大;反之低濃度區域斜率大,因此D較小,可見D為濃度的函數

(ii) 非穩定擴散

case I: D為常數的半無限長一維擴散, ex. 滲碳, 含碳量c的鋼件,置於950的滲碳氣氛中,表面維持c的碳濃度(c>c)

c/t=D∂²c/∂x² 初始條件c(x,0)=c₀...(1), c(0,t)=cₛ...(2)

c(x,t)=c₀+(cₛ-c₀)[1-erf(x/2√Dt)]

只要x>>2√Dt, 視為無限長一維擴散; 我們發現無論D是常數或是濃度的函數, xt, 告訴我們原子遷移的特徵,類似布朗運動質點隨機行走的方式,但沒有氣液相中的質點行走那麼自由!

D與溫度的關係: D=Dexp(-Q/RT)

case II: D隨濃度而變的全無限長一維擴散, ex. Cu-CuZn擴散偶

c/∂t=∂/∂x(D(c/∂x)) 初始條件c(x>0,0)=c₀...(1), c(x<0,0)=0...(2) span="">

η=x/2t, η=∂x/2t

c/∂t=(c/∂η)∙(∂η/∂t)=-(x/4t3/2)(c/∂η)...(a), ∂c/∂x=(c/∂η)∙(∂η/∂x)=1/2t(c/∂η)...(b)

(a)(b)代入原式, -(x/4t3/2)(c/∂η)=∂/(2tη)[(D/2t)(c/∂η)]

-(x/4t3/2)(c/∂η)=1/4t[∂/∂η(D(c/∂η))]→ (x/t)(dc/dη)=d/dη(D(dc/dη))

-2η(dc/dη)=d/dη(D(dc/dη)) 初始條件c(+,0)=c₀...(1), c(-∞,0)=0...(2)

c時的Dc(0<c₁<c₀), η積分→ ∫₀с¹-2ηdc=D(dc/dη)|₀с¹=D(dc/dη)|c-D(dc/dη)|₀

dη=dx/2t, D(dc/dη)=2Dt(dc/dx), c=0, dc/dx=0|₌₀ ⸫ ∫₀с¹-2ηdc=D(dc/dη)|c

-2∫₀с¹(x/2t)dc=2Dct(dc/dx)|cDc=-(1/2t)(dx/dc)|c∙∫₀с¹xdc

所以在c-x曲線上求得(dx/dc)|c斜率和∫₀с¹xdc積分,即可得Dc

但是∫₀с¹xdc, x的零點在哪裡? x=0的截面稱作野面Matano interface, 與起初的接合面不一定重合, 如何確定野面?

前述c=0, dc/dx=0|₌₀, 同理c=c, (dc/dx)|c=0 D(dc/dη)|₀с=0

因此∫₀сηdc=0=(1/2t)∫₀сxdc ∫₀сxdc=0 為了滿足此條件,野面兩邊的積分面積必須相等,若取野面上的濃度cₘ,

∫₀сxdc=-2tDc(dc/dx)|c=2tJc ∫₀сxdc+ссxdc=0

野面的流量與積分面積成正比,流進和流出的量相等,淨流量為零

(iii)均勻化, ex. 均質化處理

假設初始濃度分布沿某一方向呈周期性變化, c(x)=c+ccos(πx/l)

D不隨濃度改變, c(x,t)=c+ccos(πx/l)exp(-π²Dt/l²), τ=l²/π²D

c(x,t)=c+ccos(πx/l)exp(-t/τ), τ有關均勻化速度的快慢, 減少τ可加速均勻化,方法有(1)升溫使D, (2)降低l, 使晶粒或相尺寸縮小(細化)

擴散的微觀機構: (1)交換, (2)間隙, (3)空位

(1)交換指兩相鄰原子對調,但會使晶格發生形變,理論和實際上都不可行

(2)間隙是指間隙原子從一個間隙遷移到鄰近的間隙位置,適用於間隙固溶體, ex. 碳在α鐵或γ鐵的八面體間隙(octahedron);另一種是interstitialcy機構,Ag 離子在AgBr晶格中遷移

(3)空位:在晶體中每個溫度都有一定的平衡空位濃度,如果從高溫急冷,還有更多的空位,只是存在的時間有限,空位對原子遷移有很重要的作用

ex. 銅的自擴散,實驗求得活化能,Q=47.1 Kcal/mole,發現空位擴散機構的計算值比較接近

若是稀薄的間隙固溶體,由於鄰近的間隙位置往往是空的(Hf=0),Q值也比較小

原子遷移與擴散係數

如上圖,以統計觀點考慮δt時間內,由平面1移到平面2的原子數=n₁Γδt/6;同理, 由平面2移到平面1的原子數=n₂Γδt/6,所以由平面1移到平面2的淨通量

J=(n₁-n)Γ/6, 將面密度換算成濃度, n₁/α=c₁, n₂/α=c代入

J=(c₁-c)αΓ/6, c/∂x=(c₂-c₁)/α J=(-α²Γ/6)(c/∂x) D=α²Γ/6

*前提是各方向在隨機下,原子遷移的距離和頻率必須相同,否則會有異向性,不適用於非立方晶格

擴散係數取決於遷移距離α 和遷移頻率Γ, α 有關於晶格類型和晶格常數會受溫度溶質和溶劑原子不同的差異而影響,但無法理論計算,只能近似設想:

Γ=ZPω, Z: 擴散原子的配位數, P:鄰近位置是空位的機率, ω:遷入空位的頻率

考慮稀薄的fcc間隙固溶體中間隙原子的擴散,八面體間隙的配位數Z=12, 由於稀薄的關係,可視間隙位置都是空位(P=1), ω 可表示為 ω=vexp(-Gₘ/RT)

i.e. v:振動頻率, G:遷移的自由能障,當溫度上升, ω就會增大

fccα=2a/2, a₀:晶格常數, 因此間隙原子的擴散係數可表述成:

D=α²Γ/6=α²ZPω/6=α²ZPvexp(-Gₘ/RT)/6=(2a/2)²12vexp(-Gₘ/RT)/6

=a²vexp(-Gₘ/RT) Gₘ=∆Hₘ-T∆S代入上式

D=a²vexp(-Gₘ/RT)=a²vexp(-Sₘ/R)exp(-Hₘ/RT) vs. D=Dexp(-Q/RT)

D₀=a²vexp(-Sₘ/R), Q=H

同理, bcc 結構的間隙固溶體,間隙原子的擴散係數:

D=α²ZPvexp(-Gₘ/RT)/6=(a/2)²4vexp(-Gₘ/RT)/6=a²vexp(-Gₘ/RT)/6

D=[a²vexp(-Sₘ/R)/6]exp(-Hₘ/RT)

純金屬的空位機構自擴散: 由於純金屬是均勻的,不存在濃度梯度,因此用同位素做退火擴散,測量同位素的擴散深度, 其自擴散係數定義為

對於fcc結構的純金屬,需要補充討論的是『鄰近位置是空位的機率』P,P等於平衡空位濃度N, N=exp(-Gf/RT)=exp(Sf/R)exp(-Hf/RT)

所以擴散係數可表述成:

D=α²ZPω/6=(α²Zv/6)exp(-Gf/RT)exp(-Gₘ/RT)

={α²Zvexp[(Sf+S)/R]/6}exp[-(Hf+H)/RT]

=a²vexp[(Sf+S)/R]exp[-(Hf+H)/RT] i.e. α=2a/2, Z=12

D₀= α²Zvexp[(Sf+S)/R]/6, Q=Hf+H

同理, bcc 結構的擴散係數, D=a²vexp[(Sf+S)/R]exp[-(Hf+H)/RT]

i.e. α=√3a/2, Z=8

置換型substitutional雜質在純金屬中的擴散: 與自擴散的差異在於雜質原子和純金屬原子不同,影響到Pω的表現在活化能有何不同? 就價電子或尺寸效應來考慮

ex. Cd* diffusion in Ag, Cd2個價電子,Ag1,所以Cd的價電子,1個是自由的,1個束縛在Cd⁺⁺附近,產生被屏蔽的靜電場: (Ze/r)e-qr i.e. Z:溶質溶劑原子價差, q:屏蔽係數

假定Cd⁺⁺鄰近位置移去一個Ag,形成空位時,空位電荷為-e, 在靜電場中,空位被吸引,位能下降V(r)=-(Ze²/r)e-qr 也就是Cd⁺⁺鄰近空位的形成能Hf(Cd)=Hf(Ag)+V(r)比較小

另外,Cd⁺⁺與空位相互作用,使H降低,H(Cd)=H(Ag)+V(r),因此其活化能得

H(Cd)=H(Ag)+2V(r) 同理,對於三價的In: H(In)=H(Ag)+4V(r)

Cd, In, Sn, Sb, Ru在銀中的自擴散活化能,隨原子序的增加,溶質自擴散活化能下降,使自擴散係數增大; 若以尺寸效應解釋,大小差異使應變能增加,活化能減小,不過應變能如何影響HfH未有定論

相關效應

擴散原子遷移的方向是隨機的,n次遷移與第n+1次遷移在各個方向上有相等的 機率,空位擴散也是如此!(如圖a)

但在同位素或置換型雜質擴散,原子遷移的方向上,機率是不相等的,
n次遷移: 6→7
n+1次遷移:
7→6最可能
其次是7→57→1前提是空位6先移到51, 機率最小的是7→3,(如圖b)
擴散係數的理論公式需要修正,但非常繁瑣

Kirkenall效應: Cu-α黃銅(70-30)置換固溶體擴散實驗

發現: (1)Mo棒向黃銅測移動, (2)Zn原子的尺寸大於Cu,但移動的距離比尺寸差距大很多, (3)結論: 通過Mo棒的流量, JZn>JCu, DZn>DCu;因為D₁≠D₂造成Mo棒標記移動,稱作Kirkenall效應,支持了空位機制做擴散中的角色

對移動座標y-x,永遠只看到擴散性流動: JZn=-DZn(cZn/∂x), Jcu=-DCu(cCu/∂x)

對固定座標y-x,不只擴散性流動,還有標記移動的整體性流動:

JZn=-DZn(cZn/∂x)+cZnv, Jcu=-DCu(cCu/∂x)+cCuv i.e. v: 標記移動速度

D₁, D₂代替DZn, DCu 變成一般性討論:

由物質守恆的連續性原則c/∂t=-∂J/∂x, 將上述兩式改寫

c₁/∂t=∂[D(c₁/∂x)-c₁v]/∂x...(a), c₂/∂t=∂[D(c₂/∂x)-c₂v]/∂x...(b) i.e. c₁+c₂=c

(a)+(b), ∂c/∂t=∂[D(c₁/∂x)+D(c₂/∂x)-cv]/∂x

c/∂t=0, 意即單位體積內的原子數不隨時而變化

→ ∂[D(c₁/∂x)+D(c₂/∂x)-cv]/∂x=0, D(c₁/∂x)+D(c₂/∂x)-cv=I₀

I₀=? 設想x→∞, ∂c₁/∂x=∂c₂/∂x=0 v=0 ⸫I₀=0→ v=[D(c₁/∂x)+D(c₂/∂x)]/c...(c)

(c)代入(a), ∂c₁/∂t=∂[D(c₁/∂x)-c₁[D(c₁/∂x)+D(c₂/∂x)]/c]/∂x

由濃度換成莫耳分數, N=c/c, N=c₂/c and N₁+N=1 ∂N₁/∂x=-∂N₂/∂x

上式同除c → ∂N₁/∂t=∂[D(∂N₁/∂x)-N₁D(∂N₁/∂x)-N₁D(∂N₂/∂x)]/∂x

=∂[N₂D(∂N₁/∂x)-N₁D(∂N₂/∂x)]/∂x=∂[N₂D(∂N₁/∂x)+N₁D(∂N₁/∂x)]/∂x

N₁/∂t=∂[(N₂D₁+N₁D₂)(∂N₁/∂x)]/∂x define Ð=N₂D₁+N₁D

N₁/∂t=∂[Ð(∂N₁/∂x)]/∂x

Cu-α黃銅(70-30)擴散實驗中,如果NZn→0, Ð≈DZn

因此Ficks law需包括Kirkendall效應加到流量總和裡: J=-Ð∂c₁/∂x, J=-Ð∂c₂/∂x

全站分類:知識學習 隨堂筆記
自訂分類:材料科學
迴響(1) :
1樓. 宋坤祐
2023/03/03 18:55

發表迴響

會員登入