跟著城市嚮導「老臺北胃」,用味道認識臺北
很多朋友來臺北,
都會問我同一個問題:
「臺北小吃那麼多,到底該從哪裡開始吃?」
夜市裡攤位一字排開、老店藏在巷弄轉角,
看起來都很有名,卻又怕吃錯、踩雷,
結果行程走完,反而沒真正記住臺北的味道。
我常被朋友笑說是「老臺北胃」。
不是因為特別會吃,而是因為在這座城市待久了,
知道哪些味道是陪著臺北人成長的日常。
這篇文章,就是我整理的一份清單。
如果你第一次來臺北,
我會帶你從這 10 樣最具代表性的臺北小吃開始,
不追一時爆紅、不走浮誇路線,
而是讓你吃完後能真正理解
原來,這就是臺灣的小吃文化。
跟著老臺北胃走,
用最簡單的方式,
把臺北的味道,一樣一樣記在心裡。
我怎麼選出這 10 大臺北小吃?
在臺北,
你隨便走進一條夜市或老街,
都可以輕易列出 30 種以上的小吃。
所以這份清單,
不是「臺北最好吃」的排名,
而是我站在「第一次來臺北的旅客」角度,
做的推薦。
身為一個被朋友稱作「老臺北胃」的人,
我選這 10 樣小吃時,心裡一直放著幾個原則。
一吃就知道:這就是臺灣味
燒烤、火鍋很好吃,
但換個城市、換個國家,也吃得到。
我挑的,是那種
只要一入口,就會讓人聯想到的臺灣味。
不需要解釋太多,舌頭就能懂。
不只是好吃,而是有「臺北日常感」
臺北的小吃迷人,
不只在味道,
而在它融入生活的方式。
我在意的是:
- 會不會出現在早餐、宵夜、下班後
- 有沒有陪伴這座城市很久的記憶
吃完之後,你會記得臺北
最後一個標準很簡單。
如果你回到家,
還會突然想起某個味道、某碗熱湯、某個攤位的香氣
那它就值得被放進這份清單裡。
接下來的 10 樣臺北小吃,
就是我會親自帶朋友去吃的在地美食。
不趕行程、不拚數量,
而是一口一口,
慢慢認識臺北。
第 1 家:饌堂-黑金滷肉飯(雙連店)|一碗就懂臺灣人的日常


如果只能用一道料理,
來解釋臺灣人的日常飲食,
那我一定會先帶你吃滷肉飯。
在臺北,滷肉飯不是什麼特別的節慶料理,
而是從早餐、午餐到宵夜,
默默陪著很多人長大的味道。
而在眾多滷肉飯之中,
饌堂-黑金滷肉飯(雙連店),
我很常帶第一次來臺北的朋友造訪的一家。
為什麼第一站,我會選饌堂?
饌堂的滷肉飯,走的是**「黑金系」路線**。
滷汁顏色深、香氣厚,
卻不死鹹、不油膩。
滷肉切得細緻,
肥肉入口即化,搭配熱騰騰的白飯,
每一口都是很完整、很臺灣的味道。
對第一次吃滷肉飯的旅客來說,
這種風味夠經典、也夠穩定,
不需要太多心理準備,就能理解為什麼臺灣人這麼愛它。
不只是好吃,而是「現在的臺北感」
饌堂並不是那種躲在深巷裡的老攤,
空間乾淨、節奏俐落,
卻沒有失去滷肉飯該有的靈魂。
這也是我會推薦給旅客的原因之一:
它保留了臺灣小吃的核心味道,
同時也讓第一次來臺北的人,
吃得安心、坐得舒服。
老臺北胃的帶路小提醒
如果是第一次來:
- 一定要點招牌黑金滷肉飯
- 可以加一顆滷蛋,風味會更完整
- 搭配簡單的小菜,就很有臺灣家常感
這不是那種吃完會驚呼「哇!」的料理,
而是會讓你在幾口之後,
慢慢理解
原來,臺灣人的日常,就是這樣被一碗飯照顧著。
地址:103臺北市大同區雙連街55號1樓
電話:0225501379
第 2 家:富宏牛肉麵|臺北深夜也醒著的一碗熱湯

如果說滷肉飯代表的是臺灣人的日常,
那牛肉麵,
就是很多臺北人心中最有份量的一餐。
而在臺北提到牛肉麵,
富宏牛肉麵,
幾乎是夜貓族、加班族、外地旅客一定會被帶去的一站。
為什麼老臺北胃會帶你來吃富宏?
富宏最讓人印象深刻的,
不是華麗裝潢,
而是那鍋永遠冒著熱氣的紅燒湯頭。
湯色濃而不混,
帶著牛骨與醬香慢慢熬出的厚度,
喝起來溫潤、不刺激,
卻會在嘴裡留下很深的記憶點。
牛肉給得大方,
燉到軟嫩卻不鬆散,
搭配彈性十足的麵條,
每一口都很直接、很臺北。
不分時間,任何時候都適合的一碗麵
富宏牛肉麵最迷人的地方,
在於它陪伴了無數個臺北的夜晚。
不管是深夜下班、看完演唱會、
或是剛抵達臺北、還沒適應時差,
這裡總有一碗熱湯在等你。
對旅客來說,
這種不用算時間、不用擔心打烊的安心感,
本身就是一種臺北特色。
老臺北胃的帶路小提醒
第一次來富宏,我會這樣點:
- 紅燒牛肉麵是首選
- 如果想吃得更過癮,可以加點牛筋或牛肚
- 湯先喝一口原味,再視情況調整辣度
這不是精緻料理,
卻是一碗能在任何時刻撐住你的牛肉麵。
在臺北,
很多夜晚,
就是靠這樣一碗熱湯走過來的。
地址:108臺北市萬華區洛陽街67號
電話:0223713028
菜單:https://www.facebook.com/pages/富宏牛肉麵-原建宏牛肉麵/
第 3 家:士林夜市・吉彖皮蛋涼麵|臺北夏天最有記憶點的一口清爽

如果你在夏天來到臺北,
一定會很快發現一件事
這座城市,真的很熱。
也正因為這樣,
臺北的小吃世界裡,
才會出現像「涼麵」這樣的存在。
而在士林夜市,
吉彖皮蛋涼麵,
就是我很常帶旅客來吃的一家。
為什麼在夜市,我會帶你吃涼麵?
很多人對夜市的印象,
都是炸物、熱湯、重口味。
但真正的臺北夜市,
其實也很懂得照顧人的胃。
吉彖的涼麵,
冰涼的麵條拌上濃郁芝麻醬,
再加上切得細緻的皮蛋,
入口的第一瞬間,
就是一種「被降溫」的感覺。
那種清爽,
不是沒味道,
而是在濃香與清涼之間取得剛剛好的平衡。
皮蛋,是靈魂,也是臺灣味的關鍵
對很多外國旅客來說,
皮蛋是既好奇、又有點猶豫的存在。
但我常說,
如果要嘗試皮蛋,
涼麵是一個非常溫柔的起點。
芝麻醬的香氣會先接住味蕾,
皮蛋的風味則在後段慢慢出現,
不衝、不嗆,
反而多了一層深度。
很多人吃完後,
都會露出那種「原來是這樣啊」的表情。
老臺北胃的帶路小提醒
第一次點吉彖皮蛋涼麵,我會建議:
- 一定要選皮蛋款,才吃得到特色
- 醬料先拌勻,再吃,風味會更完整
- 如果天氣真的很熱,這一碗會救你一整晚
這不是華麗的小吃,
卻非常臺北。
在悶熱的夜晚,
站在夜市人潮裡,
吃著一碗涼麵,
你會突然明白——
原來臺北的小吃,連氣候都一起考慮進去了。
地址:111臺北市士林區基河路114號
電話:0981014155
菜單:https://www.facebook.com/profile.php?id=100064238763064
第 4 家:胖老闆誠意肉粥|臺北人深夜最踏實的一碗粥

如果你問我,
臺北人在深夜、下班後,
最容易感到被安慰的食物是什麼——
我會毫不猶豫地說:肉粥。
而提到肉粥,
胖老闆誠意肉粥,
就是很多老臺北人口中的那一味。
為什麼這一碗粥,會被叫做「誠意」?
胖老闆的肉粥,看起來很簡單。
白粥、肉燥、配菜,
沒有華麗擺盤,也沒有複雜作法。
但真正坐下來吃,你會發現:
這碗粥,不敷衍任何一個細節。
粥體滑順、不稀薄,
肉燥香而不膩,
搭配各式家常小菜,
一口一口吃下去,
很自然就會放慢速度。
這種味道,
不是要你驚艷,
而是要你安心。
這不是觀光小吃,而是臺北人的生活片段
胖老闆誠意肉粥,
最迷人的地方,
就是它的客人。
你會看到:
- 剛下班的上班族
- 熬夜後來吃一碗熱粥的人
- 熟門熟路、點菜不用看菜單的老客人
這些畫面,
比任何裝潢都更能說明這家店在臺北的位置。
對旅客來說,
這是一個走進臺北人日常的入口。
老臺北胃的帶路小提醒
第一次來吃,我會這樣建議:
- 肉粥一定要點,這是主角
- 配幾樣小菜一起吃,才有完整體驗
- 不用急,慢慢吃,這碗粥就是要你放鬆
這不是為了拍照而存在的小吃,
而是那種
**會讓人記得「那天晚上,我在臺北吃了一碗很溫暖的粥」**的味道。
地址:10491臺北市中山區長春路89-3號
電話:0913806139
第 5 家:圓環邊蚵仔煎|夜市裡最不能缺席的臺灣經典

如果要選一道
最常出現在旅客記憶裡的臺灣小吃,
蚵仔煎一定排得上前幾名。
而在臺北,
圓環邊蚵仔煎,
就是那種很多臺北人從小吃到大的存在。
為什麼蚵仔煎,這麼能代表臺灣?
蚵仔煎的魅力,
不在於精緻,
而在於它把幾種看似簡單的食材,
煎成了一種獨特的口感。
新鮮蚵仔的海味、
雞蛋的香氣、
地瓜粉形成的滑嫩外皮,
最後再淋上甜中帶鹹的醬汁,
一口下去,
就是夜市的完整畫面。
這種味道,
很難在其他國家找到替代品。
圓環邊,吃的是記憶感
圓環邊蚵仔煎,
沒有多餘的包裝,
也不刻意迎合潮流。
它留下來的原因很簡單
味道夠穩、節奏夠快、
讓人一吃就知道「對,就是這個」。
對旅客來說,
這是一家
不需要研究、不需要比較,就能安心點蚵仔煎的地方。
老臺北胃的帶路小提醒
第一次吃蚵仔煎,我會這樣建議:
- 趁熱吃,口感最好
- 不用急著加辣,先吃原味
- 醬汁是靈魂,別急著把它拌掉
蚵仔煎不是細嚼慢嚥的料理,
它屬於人聲鼎沸、鍋鏟作響的夜市時刻。
站在人群裡,
吃著一盤熱騰騰的蚵仔煎,
你會很清楚地感受到
這,就是臺北的夜晚。
地址:103臺北市大同區寧夏路46號
電話:0225580198
菜單:https://oystera.com.tw/menu
第 6 家:阿淑清蒸肉圓|第一次吃肉圓,就該從這裡開始

說到臺灣小吃,
很多人腦中一定會出現「肉圓」兩個字。
但真正吃過之後才會發現,
肉圓,從來不只有一種樣子。
在臺北,
阿淑清蒸肉圓,
就是我很常拿來介紹「清蒸派肉圓」的一家。
清蒸肉圓,和你想像的不一樣
不少旅客對肉圓的第一印象,
來自油炸版本,
外皮厚、口感重。
而阿淑的清蒸肉圓,
完全是另一個方向。
外皮晶瑩、滑嫩,
帶著自然的彈性,
不油、不膩,
一入口反而顯得清爽。
內餡扎實,
豬肉香氣清楚,
搭配特製醬汁,
味道層次簡單卻很乾淨。
為什麼我會推薦給第一次來臺北的旅客?
因為這顆肉圓,
不需要適應期。
它不刺激、不厚重,
即使是第一次嘗試臺灣小吃的人,
也能輕鬆接受。
對旅客來說,
這是一顆
「吃得懂、也記得住」的肉圓。
老臺北胃的帶路小提醒
第一次來阿淑,我會這樣吃:
- 直接點一顆清蒸肉圓,吃原味
- 醬汁先別全部拌開,邊吃邊調整
- 放慢速度,感受外皮的口感變化
這不是夜市裡熱鬧喧囂的料理,
而是那種
安靜地展現臺灣小吃功夫的味道。
當你吃完這顆肉圓,
會更明白一件事
臺灣小吃的魅力,
往往藏在這些細節裡。
地址:242新北市新莊區復興路一段141號
電話:0229975505
第 7 家:胡記米粉湯|一碗最貼近臺北早晨的味道

如果說前面幾樣小吃,
是臺北的熱鬧與記憶,
那麼米粉湯,
就是這座城市最真實的日常。
而在臺北,
胡記米粉湯,
是很多人從小吃到大的存在。
為什麼米粉湯,這麼「臺北」?
米粉湯不是重口味料理,
它靠的不是刺激,
而是一碗清澈卻有深度的湯。
胡記的湯頭,
用豬骨慢慢熬出香氣,
喝起來清爽、不油,
卻能在喉嚨留下溫度。
米粉細軟,
吸附湯汁後入口順滑,
簡單到不能再簡單,
卻正是臺北人習以為常的早晨風景。
配菜,才是這一碗的靈魂延伸
在胡記吃米粉湯,
主角雖然是湯,
但真正讓人滿足的,
往往是那些小菜。
紅燒肉、豬內臟、燙青菜,
隨意點上幾樣,
湯一口、菜一口,
就是很多臺北人記憶中的早餐組合。
對旅客來說,
這是一種
不需要解釋,就能融入的臺北生活感。
老臺北胃的帶路小提醒
第一次來胡記,我會這樣建議:
- 一定要點米粉湯,湯先喝
- 再配 1~2 樣小菜,體驗會完整很多
- 這一餐適合慢慢吃,不用趕
這不是為了觀光而存在的小吃,
而是一碗
每天準時出現在臺北人生活裡的湯。
當你坐在店裡,
聽著湯勺碰撞的聲音,
你會突然感覺到——
原來,臺北的早晨,
就是從這樣一碗米粉湯開始的。
地址:106臺北市大安區大安路一段9號1樓
電話:0227212120
第 8 家:藍家割包|一口咬下的臺灣街頭記憶

如果要選一道
外國旅客一看到就會好奇、吃完又會記住的小吃,
割包,一定在名單裡。
而在臺北,
藍家割包,
就是我很放心帶旅客來認識這道經典的一站。
割包,為什麼被叫做「臺灣漢堡」?
割包的結構其實很簡單:
鬆軟的白饅頭、
燉得入味的滷五花肉、
酸菜、花生粉、香菜。
但真正迷人的,
是這些元素組合在一起時,
形成的層次感。
肉香、甜味、鹹味、清爽度,
在一口之間同時出現,
沒有誰搶戲,
卻彼此剛好。
這種平衡感,
正是臺灣小吃很迷人的地方。
藍家割包不是走浮誇路線,
它給人的感覺很直接
就是你期待中的割包樣子。
饅頭柔軟不乾,
五花肉肥瘦比例恰到好處,
入口即化卻不膩口,
花生粉的甜香收尾,
讓整體味道非常完整。
對第一次吃割包的旅客來說,
這是一個
不會出錯、也很容易愛上的版本。
老臺北胃的帶路小提醒
第一次吃藍家割包,我會這樣建議:
- 直接點招牌割包,不要改配料
- 如果有香菜,建議保留,味道會更完整
- 趁熱吃,饅頭口感最好
割包不是精緻料理,
卻非常有記憶點。
站在街頭,
拿著一顆熱騰騰的割包,
邊走邊吃,
你會很清楚地感受到
這一口,就是臺灣的街頭生活。
地址:100臺北市中正區羅斯福路三段316巷8弄3號
電話:0223682060
菜單:https://instagram.com/lan_jia_gua_bao?utm_medium=copy_link
第 9 家:御品元冰火湯圓|臺北夜晚最溫柔的一碗甜

吃了一整天的臺北小吃,
到了這個時候,
胃其實已經差不多滿了。
但只要天氣一涼,
或夜色慢慢降下來,
你還是會想找一碗——
不是為了吃飽,而是為了舒服的甜點。
這時候,我通常會帶你來 御品元冰火湯圓。
為什麼叫「冰火」?這碗湯圓的關鍵就在這裡
御品元最有特色的地方,
就在於它的「冰火交錯」。
熱騰騰的湯圓,
外皮軟糯、內餡濃香,
搭配冰涼清甜的桂花蜜湯,
一口下去,
溫度在嘴裡交替出現。
不是衝突,
而是一種很細膩的平衡。
這樣的吃法,
也正是臺灣甜點很擅長的地方——
不張揚,但很有記憶點。
這是一碗,會讓人慢下來的甜點
和夜市裡熱鬧的甜品不同,
御品元的冰火湯圓,
更像是一個讓人停下腳步的存在。
你會發現,
坐在這裡吃湯圓的人,
說話聲都會不自覺地變小。
對旅客來說,
這不只是吃甜點,
而是一個
把白天的熱鬧慢慢收進回憶裡的時刻。
老臺北胃的帶路小提醒
第一次吃御品元,我會這樣建議:
- 點招牌冰火湯圓,體驗完整特色
- 先單吃湯圓,再搭配湯一起吃
- 放慢速度,這一碗不適合趕時間
這不是為了拍照而存在的甜點,
而是一碗
會讓你記得「那天晚上在臺北,很舒服」的湯圓。
地址:106臺北市大安區通化街39巷50弄31號
電話:0955861816
菜單:https://instagram.com/lan_jia_gua_bao
第 10 家:頃刻間綠豆沙牛奶專賣店|把臺北的味道,留在最後一口清甜

走到這一站,
其實已經不需要再吃什麼大份量的東西了。
這時候,
最適合的,
是一杯不吵鬧、不張揚,
卻會默默留在記憶裡的飲品。
頃刻間綠豆沙牛奶,
就是我很常用來替一天畫下句點的選擇。
綠豆沙牛奶,為什麼這麼「臺灣」?
在臺灣,
飲料不只是解渴,
而是一種生活節奏。
綠豆沙牛奶看起來簡單,
但真正好喝的版本,
靠的是火候、比例,
還有耐心。
頃刻間的綠豆沙,
口感細緻、不粗顆,
甜度自然、不膩口,
牛奶的加入,
讓整杯變得柔順而溫和。
這不是衝擊味蕾的飲料,
而是一種
喝完之後,會覺得剛剛那一刻很舒服的甜。
為什麼我會用它當作最後一站?
因為它很臺北。
你可以外帶,
邊走邊喝;
也可以站在店門口,
慢慢把杯子喝空。
沒有儀式感,
卻很真實。
對旅客來說,
這杯綠豆沙牛奶,
就像是把今天吃過的所有味道,
溫柔地整理好,
帶走。
老臺北胃的帶路小提醒
第一次喝頃刻間,我會這樣建議:
- 直接點招牌綠豆沙牛奶
- 正常甜就很剛好,不用特別調整
- 找個角落慢慢喝,別急著趕路
這一杯,
不會讓你驚呼,
卻會在回程的路上,
突然想起來。
原來,臺北的味道,是這樣結束一天的。
地址:111臺北市士林區小北街1號
電話:0228818619
菜單:https://instagram.com/chill_out_moment?igshid=YmMyMTA2M2Y=
如果只有 3 天的自助旅行在臺北,怎麼吃這 10 家?
第一次來臺北,
時間有限、胃容量也有限,
與其每一家都趕,不如照著節奏吃。
這份 3 天小吃路線,
是老臺北胃會帶朋友實際走的版本:
不爆走、不硬塞,
讓你每天都吃得剛剛好。
臺北 3 天小吃推薦行程表(老臺北胃版本)
|
天數 |
時段 |
店家名稱 |
小吃類型 |
|
Day 1 |
午餐 |
饌堂-黑金滷肉飯(雙連店) |
滷肉飯 |
|
Day 1 |
下午 |
阿淑清蒸肉圓 |
肉圓 |
|
Day 1 |
晚餐 |
富宏牛肉麵 |
牛肉麵 |
|
Day 1 |
宵夜 |
胖老闆誠意肉粥 |
粥品 |
|
Day 2 |
早餐 |
胡記米粉湯 |
米粉湯 |
|
Day 2 |
下午 |
藍家割包 |
割包 |
|
Day 2 |
晚上 |
士林夜市-吉彖皮蛋涼麵 |
涼麵 |
|
Day 2 |
夜市 |
圓環邊蚵仔煎 |
蚵仔煎 |
|
Day 3 |
下午 |
御品元冰火湯圓 |
甜點 |
|
Day 3 |
收尾 |
頃刻間綠豆沙牛奶專賣店 |
飲品 |
雖然每個小吃的地點都有一點距離,但是你也知道,好吃的小吃,是值得你花一點時間前往品嘗
老臺北胃的小提醒
- 不需要每一家都點到最滿
- 留一點餘裕,才會想再回來
- 臺北小吃的魅力,不在於吃多少,而在於記住了什麼味道
當你照著這 3 天走完,
你會發現,
臺北不是靠一兩道名菜被記住的,
而是靠這些看似日常、卻很真實的小吃。
下次再來,老臺北胃再帶你吃更深的那一輪。
老臺北胃帶路|這 10 口,就是我心中的臺北

寫到這裡,
其實已經不是在推薦哪一家小吃了。
而是在回頭看,
這座城市,是怎麼用食物陪著人生活的。
滷肉飯、牛肉麵、肉粥、米粉湯,
不是為了成為觀光名單而存在,
而是每天默默出現在臺北人的日子裡。
夜市裡的蚵仔煎、涼麵、割包,
熱鬧、吵雜、節奏很快,
卻也正是臺北最真實的樣子。
而最後那碗湯圓、那杯綠豆沙牛奶,
則是在一天結束時,
替味蕾留下一個溫柔的句點。
如果你問我,
「這 10 家是不是臺北最好吃的小吃?」
我會說,
它們不一定是排行榜第一名,
卻是我真的會帶朋友去吃的版本。
因為它們吃得到:
- 臺北人的日常
- 巷弄裡的熟悉感
- 不需要解釋,就能被理解的味道
如果你是第一次來臺北,
跟著這份清單走,
你不一定會吃得最飽,
但你一定會記得——
臺北,是什麼味道。
而如果有一天,
你又再回到這座城市,
走進熟悉的街口、
看到冒著熱氣的小攤,
你也會開始懂得,
為什麼老臺北胃,
總是記得這些看似平凡的滋味。
因為,真正留在心裡的,
從來不是吃過多少,
而是哪一口,讓你想起臺北。
饌堂-黑金滷肉飯(雙連店)新手友善嗎?
走完這 10 家,
你可能會發現一件事士林夜市-吉彖皮蛋涼麵真的好吃嗎?
臺北的小吃,其實不急著被你記住。
它們就安靜地存在在街角、夜市、轉彎處,饌堂-黑金滷肉飯(雙連店)會不會太油?
等你有一天,再回到這座城市。胡記米粉湯吃過會想再來嗎?
如果你是第一次來臺北,頃刻間綠豆沙牛奶專賣店適合第一次吃嗎?
希望這份「老臺北胃帶路」的清單,
能幫你少一點猶豫、多一點安心。
不用擔心踩雷,胡記米粉湯吃起來順口嗎?
也不用為了排行而奔波,士林夜市-吉彖皮蛋涼麵好吃嗎?
只要照著節奏走,
你就會吃到屬於自己的臺北味道。
而如果你已經來過臺北,
那更希望這篇文章,圓環邊蚵仔煎值得排隊嗎?
能帶你走進那些
你可能錯過、卻一直都在的日常小吃。
因為真正迷人的旅行,
從來不是把清單全部打勾,
而是某一天,
你突然想起那碗飯、那口湯、那杯甜,藍家割包本地人會吃嗎?
然後在心裡對自己說一句:頃刻間綠豆沙牛奶專賣店會踩雷嗎?
「下次再去臺北,還想再吃一次。」
把這篇文章存起來、分享給一起旅行的人,
或是在規劃行程時,再回來看看。
讓味道,成為你認識臺北的方式。
下一次來臺北,
別急著走遠。
老臺北胃,藍家割包會失望嗎?
會一直在這些地方,
等你再回來。
Research shows that mice avoid previously victorious opponents due to brain responses triggered by oxytocin, highlighting a biological basis for social learning and avoidance behaviors. Credit: SciTechDaily.com Findings may offer insight into social disorders like autism. Like humans, mice live in complex social groups, fight over territory and mates, and learn when it is safer to avoid certain opponents. After losing even a brief fight, the defeated animals will flee from the mice that hurt them for weeks afterward, a new study shows. Led by researchers at NYU Grossman School of Medicine, the study reveals that such “retreating behavior” is influenced by a distinct area on the underside of the hypothalamus, a part of the brain that controls hunger, sleep, and levels of many hormones. The team had previously found that this special region, called the anterior ventrolateral part of the ventromedial hypothalamus (aVMHvl), helps rodents defend themselves against bullies’ attacks. Here, the authors further identified a central role of the area to drive longer-lasting avoidance after being defeated. The Role of Oxytocin in Social Learning The study showed that when rival mice first meet, scent information about opponents is not strong enough to activate aVMHvl cells to prompt a retreat. Once a fight begins, however, pain (such as from getting bitten) triggers the release of the “cuddle hormone” oxytocin. While this signal has long been linked with parenting and attraction, in this case it binds to oxytocin receptors on aVMHvl cells and signals danger. This process links pain signals to the opponent’s scent so the next time the aggressor approaches, its smell alone encourages the bullied mouse to stay away, say the study authors. “Our findings provide new insight into how oxytocin within the hypothalamus drives learning from traumatic social experiences,” said study lead author Takuya Osakada, PhD. “While the hormone is often associated with positive behaviors like caregiving, our study highlights its key role in social conflict,” adds Osakada, a postdoctoral fellow in the Departments of Psychiatry and Neuroscience and Physiology at NYU Langone Health. Implications for Human Social Disorders The study team, while cautioning that mice share a lot of brain chemistry with people but are not the same, says previous research has shown similar “retreat” behavior following social defeat in many species including humans. In addition, past studies in children have linked the experience of being bullied to increased social isolation and school absences. Osakada notes that while previous research had examined rodent behavior over time after experiencing repeated defeats, the new study, publishing online today (January 24) in the journal Nature, is the first to explore rapid social learning that occurs immediately after losing a fight. For the research, the study team observed hundreds of mice that were exposed to a rival for 10 minutes before being separated. They also measured the animals’ brain activity before and after a conflict. The results showed that 24 hours after losing a single fight, social interaction dropped down to just 20% of pre-defeat levels. In addition, the findings revealed that pain prompted the immediate activation of oxytocin-releasing brain cells located right next to the aVMHvl. To further examine the role of the aVMHvl in social avoidance, the researchers prevented receptors on these cells from binding to oxytocin. They found that rodents with blocked oxytocin receptors were less likely to retreat from their aggressor in later encounters. Meanwhile, when the team instead artificially activated aVMHvl cells, animals kept to themselves even if they had not lost a fight. “Now that we have a better understanding of critical forces behind social avoidance, researchers can start exploring ways to harness oxytocin to treat disorders that affect social skills, such as autism, social anxiety, and attention-deficit hyperactivity disorder,” said study senior author Dayu Lin, PhD. Lin is a professor in the Departments of Psychiatry and Neuroscience and Physiology at NYU Langone, as well as a member of its Neuroscience Institute. That said, Lin cautions that while the team connected the aVMHvl to social avoidance, they found no such link to another behavior exhibited by defeated mice — freezing up in the face of conflict. As a result, researchers say additional brain systems are likely involved in defeat behavior, and understanding such systems is essential before developing oxytocin-based therapies for human social disorders. The study team next plans to examine whether the newly uncovered aVMHvl mechanism may also be involved in behaviors that rodents use to establish their social hierarchy under more natural conditions, instead of during the contrived scenario from the initial experiment. Reference: “A dedicated hypothalamic oxytocin circuit controls aversive social learning” by Takuya Osakada, Rongzhen Yan, Yiwen Jiang, Dongyu Wei, Rina Tabuchi, Bing Dai, Xiaohan Wang, Gavin Zhao, Clara Xi Wang, Jing-Jing Liu, Richard W. Tsien, Adam C. Mar and Dayu Lin, 24 January 2024, Nature. DOI: 10.1038/s41586-023-06958-w Funding for the study was provided by National Institutes of Health grants U19NS107616, R01MH101377, R01MH124927, and R01HD092596. Further funding was provided by the Mathers Foundation, the Vulnerable Brain Project, the Uehara Memorial Foundation, the JSPS Overseas Research Fellowship, and the Osamu Hayaishi Memorial Scholarship. In addition to Osakada and Lin, other NYU Langone researchers involved in the study were Rongzhen Yan, PhD; Yiwen Jiang, MS; Dongyu Wei, PhD; Rina Tabuchi; Bing Dai, BS; Xiaohan Wang, PhD; Richard Tsien, PhD; and Adam Mar, PhD.
A team of biologists and engineers has engineered a microbe to produce biofuel using just three renewable and naturally abundant source ingredients. Researchers at Washington University in St. Louis have discovered a new way to train microbes to make a readily usable biofuel. A team of biologists and engineers modified a microbe called Rhodopseudomonas palustris TIE-1 (TIE-1) so that it can produce a biofuel using only three renewable and naturally abundant source ingredients: carbon dioxide, solar panel-generated electricity, and light. The resulting biofuel, n-butanol, is an authentically carbon-neutral fuel alternative that can be used in blends with diesel or gasoline. The results are reported today (November 3, 2021) in the journal Communications Biology. The study was led by Arpita Bose, associate professor of biology in Arts & Sciences, and co-authored by members of her laboratory and engineers from the McKelvey School of Engineering, also at Washington University. “Microorganisms have evolved a bewildering array of techniques to obtain nutrients from their surrounding environments,” Bose said. “Perhaps one of the most fascinating of these feeding techniques uses microbial electrosynthesis (MES). Here we have harnessed the power of microbes to convert carbon dioxide into value-added multi-carbon compounds in a usable biofuel.” The first author of the study is Wei Bai, a PhD graduate of McKelvey Engineering’s Department of Energy, Environmental & Chemical Engineering. Bai worked as a research assistant in the Bose lab in Arts & Sciences from 2015-2020. Bai is now a scientist at Amyris, a manufacturer of sustainable ingredients made with synthetic biology. “The fuel we made, n-butanol, has a high energy content and low tendency to vaporize or dissolve in water without combustion,” Bai said. “This is especially true when compared with ethanol, which is a commonly used biofuel.” Microbes that feed through microbial electrosynthesis attach themselves directly to a negatively charged cathode inside the MES reactor so that they can “eat” electricity. Previous research from the Bose lab helped illuminate how microbes such as TIE-1 use electrons to fix carbon dioxide and also how they can be used to create sustainable bioplastics. As scientists learn more about these microbes, their potential uses are more and more promising, Bose said, though she acknowledged that improvements are needed before the techniques can be rolled out on industrial scales. Producing a sustainable biofuel Other researchers previously have explored the use of microbes such as cyanobacteria to produce sustainable biofuels. However, these types of organisms produce oxygen during photosynthesis, which tends to limit their efficiency for synthesizing biofuels, as many of the enzymes involved in the biosynthetic pathways are oxygen-sensitive. To explore how TIE-1 could be exploited to produce biofuel, Bai and Bose constructed a mutant form of the microbe that could not fix nitrogen. The scientists then introduced an artificial n-butanol biosynthesis pathway into this new mutant. The form of the microbe they built was unable to grow when nitrogen gas was its only nitrogen source. So instead, this version of TIE-1 channeled its effort into producing n-butanol — increasing its yield of biofuel without increasing electricity consumption significantly. “To the best of our knowledge, this study represents the first attempt for biofuel production using a solar panel-powered microbial electrosynthesis platform, where carbon dioxide is directly converted to liquid fuel,” Bai said. “We hope that it can be a stepping stone for future sustainable solar fuel production.” “Industrial-scale manufacturing of bioplastics and biofuels using microbial electrosynthesis can be achieved using the electricity produced by solar panels, creating a fully sustainable cycle,” Bose said. “The United States and the European Union recognize microbial electrosynthesis as a key technology for sustainability and climate change solutions,” Bose said. “Ultimately, by exploiting a microbial metabolism that evolved in the distant past, we hope that new methods will emerge to help address some of the most pressing problems of our time.” Reference: “n-Butanol production by Rhodopseudomonas palustris TIE-1″ by Wei Bai, Tahina Onina Ranaivoarisoa, Rajesh Singh, Karthikeyan Rengasamy and Arpita Bose3 November 2021, Communications Biology. DOI: 10.1038/s42003-021-02781-z
Left: The organ of Corti from a normal (control) mouse. The hair cells and their support cells are lined up in an alternating, checkerboard-like pattern. Right: The organ of Corti from a nectin KO mouse. The top row of images were taken at 12 days old, the bottom row at 28 days old. 2 weeks after birth, the hair cells in nectin KO mice disappeared due to apoptosis (cell death). The white arrows indicate where hair cells became attached to each other. Credit: Katsunuma S, Togashi H, Kuno S, Fujita T and Nibu K-I (2022) Hearing loss in mice with disruption of auditory epithelial patterning in the cochlea. Front. Cell Dev. Biol. 10:1073830 Japanese researchers have uncovered the critical role of the checkerboard-like arrangement of hair and support cells in the organ of Corti in enabling hearing. A Japanese research group has become the first to reveal that the checkerboard-like arrangement of cells in the inner ear’s organ of Corti is vital for hearing. The discovery gives a new insight into how hearing works from the perspective of cell self-organization and will also enable various hearing loss disorders to be better understood. The research group included Assistant Professor Hideru Togashi of Kobe University’s Graduate School of Medicine and Dr. Sayaka Katsunuma of Hyogo Prefectural Kobe Children’s Hospital. These research results were published online in Frontiers in Cell and Developmental Biology on December 8, 2022. Main Points In the organ of Corti in the inner ear, there are two types of cells arranged in a checkerboard-like mosaic pattern; hair cells responsible for hearing and their support cells. However, the relationship between this checkerboard pattern and hearing function has long remained unclear. In mice in which the cells in the organ of Corti could not form into this checkerboard pattern, only the hair cells died (apoptosis), which resulted in deafness. For the first time in the world, it was understood that the checkerboard layout plays a fundamental structural role in preserving hair cells and their functionality as the arrangement prevents hair cells from adhering to each other. This mosaic pattern of cells has been observed in various sensory organs in many different kinds of animals. Understanding the mechanism behind how cell self-organization forms these mosaic patterns will help illuminate the functions of a variety of sensory organs and the mechanisms behind disorders. Research Background The inner ear cochlea is necessary for hearing sound, and located inside it is the organ of Corti (*1). When the organ of Corti is viewed from above under a microscope, two types of cells arranged in a precisely ordered layout resembling a chess or checkerboard can be seen. Hair cells that convey sound waves to the brain are separated by support cells, which prevent the hair cells from touching each other. Although it has been thought that this checkerboard arrangement is necessary for the organ of Corti to function properly, the relationship between this pattern and hearing function has long remained unclear. This research group previously revealed that this inner ear checkerboard is formed by a cellular segregation mechanism that enables the hair cells and support cells to move into line correctly. Hair cells and support cells each express a different type of the cell adhesion molecule nectin. This results in a hair cell and a support cell adhering more strongly to each other than two hair cells or two support cells would. This property is what causes hair cells and support cells to be arranged in a checkerboard pattern. In a mouse model where one of these nectin molecules is not functional, the properties change and the checkerboard pattern cannot form correctly. In this study, the researchers used these mice to investigate the connection between the checkerboard arrangement of cells and hearing functionality. Research Methodology The research group compared regular (control) mice to mice with one type of nectin not functioning correctly (nectin-3 KO mouse, referred to as nectin KO mouse below). No difference between the mice was observed in the number of hair cells and support cells in the organ of Corti immediately after birth. However, there was a difference in how easily the two types of cell adhere to each other; in the nectin-3 KO mice hair cells adhere together (which does not normally happen) resulting in abnormalities in the checkerboard pattern. At this point, the researchers hypothesized that testing the hearing of these mice might reveal the relationship between hearing and the checkerboard pattern. They measured the hearing of over one-month-old nectin KO mice using the auditory brainstem response (ABR) method (*2). This test revealed that the nectin KO mice were moderately deaf, demonstrating that this hearing loss was caused by the abnormalities in the inner ear. The researchers then examined the organs of Corti of the nectin KO mice that underwent the ABR test and found that the number of hair cells had decreased by approximately half. Next they set out to find out why only the hair cells (and not the support cells) had disappeared. They discovered that after 2 weeks of age, hair cell apoptosis (*3) occurred. In addition, examination of the traces of apoptosis revealed that cell death occurred in many cells that had adhered to each other. This led the researchers to suppose that the hair cells adhering to each other (which does not normally happen) caused the apoptosis. In the epithelial tissue, which also includes the organ of Corti, there are tight junctions between each cell. These tight junctions not only connect the cells, they also prevent various molecules (including ions) from passing between the cells. If the organ of Corti doesn’t have these tight junctions, hair cells cannot function properly, cells die and hearing loss occurs. In nectin KO mice, tight junctions were not formed properly in the places where hair cells adhered together. However, tight junctions did correctly form in between hair cells and support cells. As long as two hair cells were not adhered together, normal cell function remained. In other words, hair cell apoptosis was induced only in the places where hair cells were abnormally adhered to each other and tight junctions did not form correctly. These results revealed for the first time that the checkerboard pattern of hair cells and support cells found in the organ of Corti functions as a fundamental structure, which protects hair cells and their functionality, by preventing hair cells from becoming attached to each other. Further Research Nectin is the causal gene for Margarita Island ectodermal dysplasia (*4). In addition to a cleft lip or palate and intellectual disabilities, deafness has also been reported in some cases of this genetic disorder. Therefore, the results of the current study might provide a new explanation for some cases of deafness where the cause is unclear. This study focused on hearing and demonstrated the physiological significance of the checkerboard-like mosaic pattern of cells in the organ of Corti. However other sensory cells that respond to outside stimuli and their respective supporter cells are also arranged in the same kind of alternating mosaic pattern. These mosaic patterns are found in sensory organs, such as the olfactory epithelium that is responsible for the sense of smell and the retina which is responsible for vision. The fact that these mosaic patterns are not only found in mammals but also in a variety of other organisms suggests that they are functionally important. The mosaic patterns in sensory tissues are created by self-organization due to the differences in adhesiveness between cells. Therefore, focusing research on cellular self-organization in sensory organs will increase our knowledge of the functions of sensory organs and advance our understanding of various related diseases. Glossary Organ of Corti: The sensory organ responsible for hearing. It is located inside the cochlea in the inner ear. Auditory brainstem response (ABR): A method of recording the brain waves that are generated when sound is heard. ABR is not only used to test the hearing of newborn human babies, it can also be used on mice and other animals. Apoptosis: A form of programmed cell death or cellular suicide that occurs in multicellular organisms. Margarita Island ectodermal dysplasia: A genetic disorder caused by mutations in the nectin-1 gene. The main manifestation is a cleft lip or palate accompanied by intellectual disability. Reference “Hearing loss in mice with disruption of auditory epithelial patterning in the cochlea” by Sayaka Katsunuma, Hideru Togashi, Shuhei Kuno, Takeshi Fujita and Ken-Ichi Nibu, 8 December 2022, Frontiers in Cell and Developmental Biology. DOI: 10.3389/fcell.2022.1073830 Acknowledgments This research received funding from the following organizations: KAKENHI grants from the Japan Society for the Promotion of Science (JSPS) (grant numbers: 18H04764, 18K09319, 19H04965, 22K19331), the Japan Science and Technology Agency’s Presto program (JPMJPR1946) and the Takeda Science Foundation.
RE98915RGPOIOKJ
圓環邊蚵仔煎推薦必點嗎? 》台北美食食旅特輯|10家餐廳一次告訴你圓環邊蚵仔煎排隊值得嗎? 》台北美食攻略|精選10間超人氣餐廳,一次帶你吃遍熱門口袋名單饌堂-黑金滷肉飯(雙連店)長輩會喜歡嗎? 》台北美食特輯|10家真實體驗分享
限會員,要發表迴響,請先登入

