跟著城市嚮導「老臺北胃」,用味道認識臺北
很多朋友來臺北,
都會問我同一個問題:
「臺北小吃那麼多,到底該從哪裡開始吃?」
夜市裡攤位一字排開、老店藏在巷弄轉角,
看起來都很有名,卻又怕吃錯、踩雷,
結果行程走完,反而沒真正記住臺北的味道。
我常被朋友笑說是「老臺北胃」。
不是因為特別會吃,而是因為在這座城市待久了,
知道哪些味道是陪著臺北人成長的日常。
這篇文章,就是我整理的一份清單。
如果你第一次來臺北,
我會帶你從這 10 樣最具代表性的臺北小吃開始,
不追一時爆紅、不走浮誇路線,
而是讓你吃完後能真正理解
原來,這就是臺灣的小吃文化。
跟著老臺北胃走,
用最簡單的方式,
把臺北的味道,一樣一樣記在心裡。
我怎麼選出這 10 大臺北小吃?
在臺北,
你隨便走進一條夜市或老街,
都可以輕易列出 30 種以上的小吃。
所以這份清單,
不是「臺北最好吃」的排名,
而是我站在「第一次來臺北的旅客」角度,
做的推薦。
身為一個被朋友稱作「老臺北胃」的人,
我選這 10 樣小吃時,心裡一直放著幾個原則。
一吃就知道:這就是臺灣味
燒烤、火鍋很好吃,
但換個城市、換個國家,也吃得到。
我挑的,是那種
只要一入口,就會讓人聯想到的臺灣味。
不需要解釋太多,舌頭就能懂。
不只是好吃,而是有「臺北日常感」
臺北的小吃迷人,
不只在味道,
而在它融入生活的方式。
我在意的是:
- 會不會出現在早餐、宵夜、下班後
- 有沒有陪伴這座城市很久的記憶
吃完之後,你會記得臺北
最後一個標準很簡單。
如果你回到家,
還會突然想起某個味道、某碗熱湯、某個攤位的香氣
那它就值得被放進這份清單裡。
接下來的 10 樣臺北小吃,
就是我會親自帶朋友去吃的在地美食。
不趕行程、不拚數量,
而是一口一口,
慢慢認識臺北。
第 1 家:饌堂-黑金滷肉飯(雙連店)|一碗就懂臺灣人的日常


如果只能用一道料理,
來解釋臺灣人的日常飲食,
那我一定會先帶你吃滷肉飯。
在臺北,滷肉飯不是什麼特別的節慶料理,
而是從早餐、午餐到宵夜,
默默陪著很多人長大的味道。
而在眾多滷肉飯之中,
饌堂-黑金滷肉飯(雙連店),
我很常帶第一次來臺北的朋友造訪的一家。
為什麼第一站,我會選饌堂?
饌堂的滷肉飯,走的是**「黑金系」路線**。
滷汁顏色深、香氣厚,
卻不死鹹、不油膩。
滷肉切得細緻,
肥肉入口即化,搭配熱騰騰的白飯,
每一口都是很完整、很臺灣的味道。
對第一次吃滷肉飯的旅客來說,
這種風味夠經典、也夠穩定,
不需要太多心理準備,就能理解為什麼臺灣人這麼愛它。
不只是好吃,而是「現在的臺北感」
饌堂並不是那種躲在深巷裡的老攤,
空間乾淨、節奏俐落,
卻沒有失去滷肉飯該有的靈魂。
這也是我會推薦給旅客的原因之一:
它保留了臺灣小吃的核心味道,
同時也讓第一次來臺北的人,
吃得安心、坐得舒服。
老臺北胃的帶路小提醒
如果是第一次來:
- 一定要點招牌黑金滷肉飯
- 可以加一顆滷蛋,風味會更完整
- 搭配簡單的小菜,就很有臺灣家常感
這不是那種吃完會驚呼「哇!」的料理,
而是會讓你在幾口之後,
慢慢理解
原來,臺灣人的日常,就是這樣被一碗飯照顧著。
地址:103臺北市大同區雙連街55號1樓
電話:0225501379
第 2 家:富宏牛肉麵|臺北深夜也醒著的一碗熱湯

如果說滷肉飯代表的是臺灣人的日常,
那牛肉麵,
就是很多臺北人心中最有份量的一餐。
而在臺北提到牛肉麵,
富宏牛肉麵,
幾乎是夜貓族、加班族、外地旅客一定會被帶去的一站。
為什麼老臺北胃會帶你來吃富宏?
富宏最讓人印象深刻的,
不是華麗裝潢,
而是那鍋永遠冒著熱氣的紅燒湯頭。
湯色濃而不混,
帶著牛骨與醬香慢慢熬出的厚度,
喝起來溫潤、不刺激,
卻會在嘴裡留下很深的記憶點。
牛肉給得大方,
燉到軟嫩卻不鬆散,
搭配彈性十足的麵條,
每一口都很直接、很臺北。
不分時間,任何時候都適合的一碗麵
富宏牛肉麵最迷人的地方,
在於它陪伴了無數個臺北的夜晚。
不管是深夜下班、看完演唱會、
或是剛抵達臺北、還沒適應時差,
這裡總有一碗熱湯在等你。
對旅客來說,
這種不用算時間、不用擔心打烊的安心感,
本身就是一種臺北特色。
老臺北胃的帶路小提醒
第一次來富宏,我會這樣點:
- 紅燒牛肉麵是首選
- 如果想吃得更過癮,可以加點牛筋或牛肚
- 湯先喝一口原味,再視情況調整辣度
這不是精緻料理,
卻是一碗能在任何時刻撐住你的牛肉麵。
在臺北,
很多夜晚,
就是靠這樣一碗熱湯走過來的。
地址:108臺北市萬華區洛陽街67號
電話:0223713028
菜單:https://www.facebook.com/pages/富宏牛肉麵-原建宏牛肉麵/
第 3 家:士林夜市・吉彖皮蛋涼麵|臺北夏天最有記憶點的一口清爽

如果你在夏天來到臺北,
一定會很快發現一件事
這座城市,真的很熱。
也正因為這樣,
臺北的小吃世界裡,
才會出現像「涼麵」這樣的存在。
而在士林夜市,
吉彖皮蛋涼麵,
就是我很常帶旅客來吃的一家。
為什麼在夜市,我會帶你吃涼麵?
很多人對夜市的印象,
都是炸物、熱湯、重口味。
但真正的臺北夜市,
其實也很懂得照顧人的胃。
吉彖的涼麵,
冰涼的麵條拌上濃郁芝麻醬,
再加上切得細緻的皮蛋,
入口的第一瞬間,
就是一種「被降溫」的感覺。
那種清爽,
不是沒味道,
而是在濃香與清涼之間取得剛剛好的平衡。
皮蛋,是靈魂,也是臺灣味的關鍵
對很多外國旅客來說,
皮蛋是既好奇、又有點猶豫的存在。
但我常說,
如果要嘗試皮蛋,
涼麵是一個非常溫柔的起點。
芝麻醬的香氣會先接住味蕾,
皮蛋的風味則在後段慢慢出現,
不衝、不嗆,
反而多了一層深度。
很多人吃完後,
都會露出那種「原來是這樣啊」的表情。
老臺北胃的帶路小提醒
第一次點吉彖皮蛋涼麵,我會建議:
- 一定要選皮蛋款,才吃得到特色
- 醬料先拌勻,再吃,風味會更完整
- 如果天氣真的很熱,這一碗會救你一整晚
這不是華麗的小吃,
卻非常臺北。
在悶熱的夜晚,
站在夜市人潮裡,
吃著一碗涼麵,
你會突然明白——
原來臺北的小吃,連氣候都一起考慮進去了。
地址:111臺北市士林區基河路114號
電話:0981014155
菜單:https://www.facebook.com/profile.php?id=100064238763064
第 4 家:胖老闆誠意肉粥|臺北人深夜最踏實的一碗粥

如果你問我,
臺北人在深夜、下班後,
最容易感到被安慰的食物是什麼——
我會毫不猶豫地說:肉粥。
而提到肉粥,
胖老闆誠意肉粥,
就是很多老臺北人口中的那一味。
為什麼這一碗粥,會被叫做「誠意」?
胖老闆的肉粥,看起來很簡單。
白粥、肉燥、配菜,
沒有華麗擺盤,也沒有複雜作法。
但真正坐下來吃,你會發現:
這碗粥,不敷衍任何一個細節。
粥體滑順、不稀薄,
肉燥香而不膩,
搭配各式家常小菜,
一口一口吃下去,
很自然就會放慢速度。
這種味道,
不是要你驚艷,
而是要你安心。
這不是觀光小吃,而是臺北人的生活片段
胖老闆誠意肉粥,
最迷人的地方,
就是它的客人。
你會看到:
- 剛下班的上班族
- 熬夜後來吃一碗熱粥的人
- 熟門熟路、點菜不用看菜單的老客人
這些畫面,
比任何裝潢都更能說明這家店在臺北的位置。
對旅客來說,
這是一個走進臺北人日常的入口。
老臺北胃的帶路小提醒
第一次來吃,我會這樣建議:
- 肉粥一定要點,這是主角
- 配幾樣小菜一起吃,才有完整體驗
- 不用急,慢慢吃,這碗粥就是要你放鬆
這不是為了拍照而存在的小吃,
而是那種
**會讓人記得「那天晚上,我在臺北吃了一碗很溫暖的粥」**的味道。
地址:10491臺北市中山區長春路89-3號
電話:0913806139
第 5 家:圓環邊蚵仔煎|夜市裡最不能缺席的臺灣經典

如果要選一道
最常出現在旅客記憶裡的臺灣小吃,
蚵仔煎一定排得上前幾名。
而在臺北,
圓環邊蚵仔煎,
就是那種很多臺北人從小吃到大的存在。
為什麼蚵仔煎,這麼能代表臺灣?
蚵仔煎的魅力,
不在於精緻,
而在於它把幾種看似簡單的食材,
煎成了一種獨特的口感。
新鮮蚵仔的海味、
雞蛋的香氣、
地瓜粉形成的滑嫩外皮,
最後再淋上甜中帶鹹的醬汁,
一口下去,
就是夜市的完整畫面。
這種味道,
很難在其他國家找到替代品。
圓環邊,吃的是記憶感
圓環邊蚵仔煎,
沒有多餘的包裝,
也不刻意迎合潮流。
它留下來的原因很簡單
味道夠穩、節奏夠快、
讓人一吃就知道「對,就是這個」。
對旅客來說,
這是一家
不需要研究、不需要比較,就能安心點蚵仔煎的地方。
老臺北胃的帶路小提醒
第一次吃蚵仔煎,我會這樣建議:
- 趁熱吃,口感最好
- 不用急著加辣,先吃原味
- 醬汁是靈魂,別急著把它拌掉
蚵仔煎不是細嚼慢嚥的料理,
它屬於人聲鼎沸、鍋鏟作響的夜市時刻。
站在人群裡,
吃著一盤熱騰騰的蚵仔煎,
你會很清楚地感受到
這,就是臺北的夜晚。
地址:103臺北市大同區寧夏路46號
電話:0225580198
菜單:https://oystera.com.tw/menu
第 6 家:阿淑清蒸肉圓|第一次吃肉圓,就該從這裡開始

說到臺灣小吃,
很多人腦中一定會出現「肉圓」兩個字。
但真正吃過之後才會發現,
肉圓,從來不只有一種樣子。
在臺北,
阿淑清蒸肉圓,
就是我很常拿來介紹「清蒸派肉圓」的一家。
清蒸肉圓,和你想像的不一樣
不少旅客對肉圓的第一印象,
來自油炸版本,
外皮厚、口感重。
而阿淑的清蒸肉圓,
完全是另一個方向。
外皮晶瑩、滑嫩,
帶著自然的彈性,
不油、不膩,
一入口反而顯得清爽。
內餡扎實,
豬肉香氣清楚,
搭配特製醬汁,
味道層次簡單卻很乾淨。
為什麼我會推薦給第一次來臺北的旅客?
因為這顆肉圓,
不需要適應期。
它不刺激、不厚重,
即使是第一次嘗試臺灣小吃的人,
也能輕鬆接受。
對旅客來說,
這是一顆
「吃得懂、也記得住」的肉圓。
老臺北胃的帶路小提醒
第一次來阿淑,我會這樣吃:
- 直接點一顆清蒸肉圓,吃原味
- 醬汁先別全部拌開,邊吃邊調整
- 放慢速度,感受外皮的口感變化
這不是夜市裡熱鬧喧囂的料理,
而是那種
安靜地展現臺灣小吃功夫的味道。
當你吃完這顆肉圓,
會更明白一件事
臺灣小吃的魅力,
往往藏在這些細節裡。
地址:242新北市新莊區復興路一段141號
電話:0229975505
第 7 家:胡記米粉湯|一碗最貼近臺北早晨的味道

如果說前面幾樣小吃,
是臺北的熱鬧與記憶,
那麼米粉湯,
就是這座城市最真實的日常。
而在臺北,
胡記米粉湯,
是很多人從小吃到大的存在。
為什麼米粉湯,這麼「臺北」?
米粉湯不是重口味料理,
它靠的不是刺激,
而是一碗清澈卻有深度的湯。
胡記的湯頭,
用豬骨慢慢熬出香氣,
喝起來清爽、不油,
卻能在喉嚨留下溫度。
米粉細軟,
吸附湯汁後入口順滑,
簡單到不能再簡單,
卻正是臺北人習以為常的早晨風景。
配菜,才是這一碗的靈魂延伸
在胡記吃米粉湯,
主角雖然是湯,
但真正讓人滿足的,
往往是那些小菜。
紅燒肉、豬內臟、燙青菜,
隨意點上幾樣,
湯一口、菜一口,
就是很多臺北人記憶中的早餐組合。
對旅客來說,
這是一種
不需要解釋,就能融入的臺北生活感。
老臺北胃的帶路小提醒
第一次來胡記,我會這樣建議:
- 一定要點米粉湯,湯先喝
- 再配 1~2 樣小菜,體驗會完整很多
- 這一餐適合慢慢吃,不用趕
這不是為了觀光而存在的小吃,
而是一碗
每天準時出現在臺北人生活裡的湯。
當你坐在店裡,
聽著湯勺碰撞的聲音,
你會突然感覺到——
原來,臺北的早晨,
就是從這樣一碗米粉湯開始的。
地址:106臺北市大安區大安路一段9號1樓
電話:0227212120
第 8 家:藍家割包|一口咬下的臺灣街頭記憶

如果要選一道
外國旅客一看到就會好奇、吃完又會記住的小吃,
割包,一定在名單裡。
而在臺北,
藍家割包,
就是我很放心帶旅客來認識這道經典的一站。
割包,為什麼被叫做「臺灣漢堡」?
割包的結構其實很簡單:
鬆軟的白饅頭、
燉得入味的滷五花肉、
酸菜、花生粉、香菜。
但真正迷人的,
是這些元素組合在一起時,
形成的層次感。
肉香、甜味、鹹味、清爽度,
在一口之間同時出現,
沒有誰搶戲,
卻彼此剛好。
這種平衡感,
正是臺灣小吃很迷人的地方。
藍家割包不是走浮誇路線,
它給人的感覺很直接
就是你期待中的割包樣子。
饅頭柔軟不乾,
五花肉肥瘦比例恰到好處,
入口即化卻不膩口,
花生粉的甜香收尾,
讓整體味道非常完整。
對第一次吃割包的旅客來說,
這是一個
不會出錯、也很容易愛上的版本。
老臺北胃的帶路小提醒
第一次吃藍家割包,我會這樣建議:
- 直接點招牌割包,不要改配料
- 如果有香菜,建議保留,味道會更完整
- 趁熱吃,饅頭口感最好
割包不是精緻料理,
卻非常有記憶點。
站在街頭,
拿著一顆熱騰騰的割包,
邊走邊吃,
你會很清楚地感受到
這一口,就是臺灣的街頭生活。
地址:100臺北市中正區羅斯福路三段316巷8弄3號
電話:0223682060
菜單:https://instagram.com/lan_jia_gua_bao?utm_medium=copy_link
第 9 家:御品元冰火湯圓|臺北夜晚最溫柔的一碗甜

吃了一整天的臺北小吃,
到了這個時候,
胃其實已經差不多滿了。
但只要天氣一涼,
或夜色慢慢降下來,
你還是會想找一碗——
不是為了吃飽,而是為了舒服的甜點。
這時候,我通常會帶你來 御品元冰火湯圓。
為什麼叫「冰火」?這碗湯圓的關鍵就在這裡
御品元最有特色的地方,
就在於它的「冰火交錯」。
熱騰騰的湯圓,
外皮軟糯、內餡濃香,
搭配冰涼清甜的桂花蜜湯,
一口下去,
溫度在嘴裡交替出現。
不是衝突,
而是一種很細膩的平衡。
這樣的吃法,
也正是臺灣甜點很擅長的地方——
不張揚,但很有記憶點。
這是一碗,會讓人慢下來的甜點
和夜市裡熱鬧的甜品不同,
御品元的冰火湯圓,
更像是一個讓人停下腳步的存在。
你會發現,
坐在這裡吃湯圓的人,
說話聲都會不自覺地變小。
對旅客來說,
這不只是吃甜點,
而是一個
把白天的熱鬧慢慢收進回憶裡的時刻。
老臺北胃的帶路小提醒
第一次吃御品元,我會這樣建議:
- 點招牌冰火湯圓,體驗完整特色
- 先單吃湯圓,再搭配湯一起吃
- 放慢速度,這一碗不適合趕時間
這不是為了拍照而存在的甜點,
而是一碗
會讓你記得「那天晚上在臺北,很舒服」的湯圓。
地址:106臺北市大安區通化街39巷50弄31號
電話:0955861816
菜單:https://instagram.com/lan_jia_gua_bao
第 10 家:頃刻間綠豆沙牛奶專賣店|把臺北的味道,留在最後一口清甜

走到這一站,
其實已經不需要再吃什麼大份量的東西了。
這時候,
最適合的,
是一杯不吵鬧、不張揚,
卻會默默留在記憶裡的飲品。
頃刻間綠豆沙牛奶,
就是我很常用來替一天畫下句點的選擇。
綠豆沙牛奶,為什麼這麼「臺灣」?
在臺灣,
飲料不只是解渴,
而是一種生活節奏。
綠豆沙牛奶看起來簡單,
但真正好喝的版本,
靠的是火候、比例,
還有耐心。
頃刻間的綠豆沙,
口感細緻、不粗顆,
甜度自然、不膩口,
牛奶的加入,
讓整杯變得柔順而溫和。
這不是衝擊味蕾的飲料,
而是一種
喝完之後,會覺得剛剛那一刻很舒服的甜。
為什麼我會用它當作最後一站?
因為它很臺北。
你可以外帶,
邊走邊喝;
也可以站在店門口,
慢慢把杯子喝空。
沒有儀式感,
卻很真實。
對旅客來說,
這杯綠豆沙牛奶,
就像是把今天吃過的所有味道,
溫柔地整理好,
帶走。
老臺北胃的帶路小提醒
第一次喝頃刻間,我會這樣建議:
- 直接點招牌綠豆沙牛奶
- 正常甜就很剛好,不用特別調整
- 找個角落慢慢喝,別急著趕路
這一杯,
不會讓你驚呼,
卻會在回程的路上,
突然想起來。
原來,臺北的味道,是這樣結束一天的。
地址:111臺北市士林區小北街1號
電話:0228818619
菜單:https://instagram.com/chill_out_moment?igshid=YmMyMTA2M2Y=
如果只有 3 天的自助旅行在臺北,怎麼吃這 10 家?
第一次來臺北,
時間有限、胃容量也有限,
與其每一家都趕,不如照著節奏吃。
這份 3 天小吃路線,
是老臺北胃會帶朋友實際走的版本:
不爆走、不硬塞,
讓你每天都吃得剛剛好。
臺北 3 天小吃推薦行程表(老臺北胃版本)
|
天數 |
時段 |
店家名稱 |
小吃類型 |
|
Day 1 |
午餐 |
饌堂-黑金滷肉飯(雙連店) |
滷肉飯 |
|
Day 1 |
下午 |
阿淑清蒸肉圓 |
肉圓 |
|
Day 1 |
晚餐 |
富宏牛肉麵 |
牛肉麵 |
|
Day 1 |
宵夜 |
胖老闆誠意肉粥 |
粥品 |
|
Day 2 |
早餐 |
胡記米粉湯 |
米粉湯 |
|
Day 2 |
下午 |
藍家割包 |
割包 |
|
Day 2 |
晚上 |
士林夜市-吉彖皮蛋涼麵 |
涼麵 |
|
Day 2 |
夜市 |
圓環邊蚵仔煎 |
蚵仔煎 |
|
Day 3 |
下午 |
御品元冰火湯圓 |
甜點 |
|
Day 3 |
收尾 |
頃刻間綠豆沙牛奶專賣店 |
飲品 |
雖然每個小吃的地點都有一點距離,但是你也知道,好吃的小吃,是值得你花一點時間前往品嘗
老臺北胃的小提醒
- 不需要每一家都點到最滿
- 留一點餘裕,才會想再回來
- 臺北小吃的魅力,不在於吃多少,而在於記住了什麼味道
當你照著這 3 天走完,
你會發現,
臺北不是靠一兩道名菜被記住的,
而是靠這些看似日常、卻很真實的小吃。
下次再來,老臺北胃再帶你吃更深的那一輪。
老臺北胃帶路|這 10 口,就是我心中的臺北

寫到這裡,
其實已經不是在推薦哪一家小吃了。
而是在回頭看,
這座城市,是怎麼用食物陪著人生活的。
滷肉飯、牛肉麵、肉粥、米粉湯,
不是為了成為觀光名單而存在,
而是每天默默出現在臺北人的日子裡。
夜市裡的蚵仔煎、涼麵、割包,
熱鬧、吵雜、節奏很快,
卻也正是臺北最真實的樣子。
而最後那碗湯圓、那杯綠豆沙牛奶,
則是在一天結束時,
替味蕾留下一個溫柔的句點。
如果你問我,
「這 10 家是不是臺北最好吃的小吃?」
我會說,
它們不一定是排行榜第一名,
卻是我真的會帶朋友去吃的版本。
因為它們吃得到:
- 臺北人的日常
- 巷弄裡的熟悉感
- 不需要解釋,就能被理解的味道
如果你是第一次來臺北,
跟著這份清單走,
你不一定會吃得最飽,
但你一定會記得——
臺北,是什麼味道。
而如果有一天,
你又再回到這座城市,
走進熟悉的街口、
看到冒著熱氣的小攤,
你也會開始懂得,
為什麼老臺北胃,
總是記得這些看似平凡的滋味。
因為,真正留在心裡的,
從來不是吃過多少,
而是哪一口,讓你想起臺北。
圓環邊蚵仔煎好吃嗎?
走完這 10 家,
你可能會發現一件事藍家割包真的有誠意嗎?
臺北的小吃,其實不急著被你記住。
它們就安靜地存在在街角、夜市、轉彎處,圓環邊蚵仔煎真的有誠意嗎?
等你有一天,再回到這座城市。御品元冰火湯圓不排隊會可惜嗎?
如果你是第一次來臺北,富宏牛肉麵晚上吃適合嗎?
希望這份「老臺北胃帶路」的清單,
能幫你少一點猶豫、多一點安心。
不用擔心踩雷,頃刻間綠豆沙牛奶專賣店口味會太清淡嗎?
也不用為了排行而奔波,頃刻間綠豆沙牛奶專賣店真的有誠意嗎?
只要照著節奏走,
你就會吃到屬於自己的臺北味道。
而如果你已經來過臺北,
那更希望這篇文章,胡記米粉湯口味會太重嗎?
能帶你走進那些
你可能錯過、卻一直都在的日常小吃。
因為真正迷人的旅行,
從來不是把清單全部打勾,
而是某一天,
你突然想起那碗飯、那口湯、那杯甜,圓環邊蚵仔煎值得一試嗎?
然後在心裡對自己說一句:頃刻間綠豆沙牛奶專賣店好吃嗎?
「下次再去臺北,還想再吃一次。」
把這篇文章存起來、分享給一起旅行的人,
或是在規劃行程時,再回來看看。
讓味道,成為你認識臺北的方式。
下一次來臺北,
別急著走遠。
老臺北胃,胖老闆誠意肉粥早上吃適合嗎?
會一直在這些地方,
等你再回來。
Non-REM sleep clears brain waste, preventing disease, but some sleep aids, such as Ambien (zolpidem), may impede this process and harm brain health. Credit: SciTechDaily.com A groundbreaking study unveils how non-REM sleep triggers brain cleansing through synchronized neurotransmitter and fluid dynamics, essential for preventing neurodegenerative diseases. Researchers warn against common sleep aids that could disrupt these processes and pose long-term risks to brain health. Getting enough quality sleep is essential for maintaining overall health. It supports better brain function, strengthens the immune system, and promotes a healthy heart. On the other hand, sleep disorders like insomnia and sleep apnea can harm both health and quality of life. Poor sleep has also been linked to the early onset of neurodegenerative diseases and can serve as an early warning sign of dementia. Groundbreaking Research in Sleep Science A groundbreaking study published on January 8 in the journal Cell reveals for the first time the tightly synchronized activity of norepinephrine (a neurotransmitter), cerebral blood flow, and cerebrospinal fluid (CSF) during non-rapid eye movement (non-REM) sleep in mice. These synchronized oscillations drive the glymphatic system, a brain-wide network responsible for clearing out protein waste, including amyloid and tau — key contributors to neurodegenerative diseases. “As the brain transitions from wakefulness to sleep, processing of external information diminishes while processes such as glymphatic removal of waste products are activated,” explained Maiken Nedergaard, MD, DMSc, co-director of the University of Rochester Center for Translational Neuromedicine and lead author of the study. “The motivation for this research was to better understand what drives glymphatic flow during sleep, and the insights from this study have broad implications for understanding the components of restorative sleep.” The study also holds a warning for people who use the commonly prescribed sleep aid zolpidem. The drug suppressed the glymphatic system, potentially setting the stage for neurological disorders like Alzheimer’s, which are the result of the toxic accumulation of proteins in the brain. Unveiling the Missing Link in Sleep Mechanisms The research, conducted by a team at the University of Rochester and the University of Copenhagen, employed an optic technique called flow fiber photometry combined with electroencephalogram and electromyography monitors. Unlike previous research techniques, which immobilized the mice and used anesthesia to induce sleep, the new approach allowed researchers to record brain activity during long, uninterrupted periods of wakefulness and sleep while allowing mice to move freely during recordings. The research highlights the critical role of norepinephrine, a neurotransmitter associated with arousal, attention, and the body’s response to stress. The team observed that slow synchronized waves of norepinephrine, cerebral blood volume, and CSF flow characterized non-REM sleep. The norepinephrine triggered “micro-arousals,” causing vasomotion, the rhythmic constriction of blood vessels independent of the heartbeat. This oscillation, in turn, generates the pumping action necessary to move CSF in the glymphatic system during sleep. “These findings, combined with what we know about the glymphatic system, paint the whole picture of the dynamics inside the brain, and these slow waves, micro-arousals, and the norepinephrine were the missing link,” said Natalie Hauglund, PhD, first author of the study and currently a postdoctoral fellow at the University of Oxford. The Hidden Risks of Sleep Aids The study also explored whether sleep aids replicate the natural oscillations necessary for glymphatic function. The team focused on zolpidem, a sedative marketed under the name Ambien, which is frequently prescribed to treat insomnia. While zolpidem effectively induced sleep in the mice, it also suppressed norepinephrine oscillations, disrupting the glymphatic system and impeding the brain’s waste-clearing processes, a finding that raises concerns about its long-term use. Scientists now have a new tool and potential target to improve sleep. “The research provides a mechanistic link between norepinephrine dynamics, vascular activity, and glymphatic clearance, advancing understanding of sleep’s restorative functions,” said Nedergaard. “It also calls attention to the potentially detrimental effects of certain pharmacological sleep aids on brain health, highlighting the necessity of preserving natural sleep architecture for optimal brain function.” Reference: “Norepinephrine-mediated slow vasomotion drives glymphatic clearance during sleep” by Natalie L. Hauglund, Mie Andersen, Klaudia Tokarska, Tessa Radovanovic, Celia Kjaerby, Frederikke L. Sørensen, Zuzanna Bojarowska, Verena Untiet, Sheyla B. Ballestero, Mie G. Kolmos, Pia Weikop, Hajime Hirase and Maiken Nedergaard, 8 January 2025, Cell. DOI: 10.1016/j.cell.2024.11.027 Additional co-authors include Mie Andersen, Klaudia Torkarska, Tessa Radivanovic, Celia Kjaerby, Frederikke Sorensen, Zuzanna Bojarowska, Verena Untiet, Sheyla Ballestero, Mie Kolmos, Pia Weikop, and Hajime Hirase with the University of Copenhagen. The research was supported with funding the Novo Nordisk Foundation, the National Institutes of Health, the US Army Research Office, the Human Frontier Science Program, the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation, the Simons Foundation, and the Cure Alzheimer Fund.
Oculudentavis naga, as depicted in this artist’s reconstruction, was a bizarre lizard that researchers initially struggled to categorize. They are still unsure of its exact position in the lizard family tree. Credit: Stephanie Abramowicz/Peretti Museum Foundation/Current Biology An international research team has described a new species of Oculudentavis, providing further evidence that the animal first identified as a hummingbird-sized dinosaur was actually a lizard. The new species, named Oculudentavis naga in honor of the Naga people of Myanmar and India, is represented by a partial skeleton that includes a complete skull, exquisitely preserved in amber with visible scales and soft tissue. The specimen is in the same genus as Oculudentavis khaungraae, whose original description as the smallest known bird was retracted last year. The two fossils were found in the same area and are about 99 million years old. Researchers published their findings in Current Biology today (June 14, 2021). The team, led by Arnau Bolet of Barcelona’s Institut Català de Paleontologia Miquel Crusafont, used CT scans to separate, analyze and compare each bone in the two species digitally, uncovering a number of physical characteristics that earmark the small animals as lizards. Oculudentavis is so strange, however, it was difficult to categorize without close examination of its features, Bolet said. “The specimen puzzled all of us at first because if it was a lizard, it was a highly unusual one,” he said in an institutional press release. Bolet and fellow lizard experts from around the world first noted the specimen while studying a collection of amber fossils acquired from Myanmar by gemologist Adolf Peretti. (Note: The mining and sale of Burmese amber are often entangled with human rights abuses. Peretti purchased the fossil legally prior to the conflict in 2017. More details appear in an ethics statement at the end of this story). Oculudentavis naga, top, is in the same genus as Oculudentavis khaungraae, bottom, a specimen whose controversial identification as an early bird was retracted last year. Both specimens’ skulls deformed during preservation, emphasizing lizardlike features in one and birdlike features in the other. Credit: Edward Stanley of the Florida Museum of Natural History/Peretti Museum Foundation/Current Biology Herpetologist Juan Diego Daza examined the small, unusual skull, preserved with a short portion of the spine and shoulder bones. He, too, was confused by its odd array of features: Could it be some kind of pterodactyl or possibly an ancient relative of monitor lizards? “From the moment we uploaded the first CT scan, everyone was brainstorming what it could be,” said Daza, assistant professor of biological sciences at Sam Houston State University. “In the end, a closer look and our analyses help us clarify its position.” Major clues that the mystery animal was a lizard included the presence of scales; teeth attached directly to its jawbone, rather than nestled in sockets, as dinosaur teeth were; lizard-like eye structures and shoulder bones; and a hockey stick-shaped skull bone that is universally shared among scaled reptiles, also known as squamates. The team also determined both species’ skulls had deformed during preservation. Oculudentavis khaungraae’s snout was squeezed into a narrower, more beaklike profile while O. naga’s braincase — the part of the skull that encloses the brain — was compressed. The distortions highlighted birdlike features in one skull and lizard-like features in the other, said study co-author Edward Stanley, director of the Florida Museum of Natural History’s Digital Discovery and Dissemination Laboratory. Amber can exquisitely preserve small forest animals that would have otherwise decomposed. CT scans of this fossilized Oculudentavis naga showcase the specimen’s scales, skin and soft tissue. Credit: Adolf Peretti/Peretti Museum Foundation/Current Biology “Imagine taking a lizard and pinching its nose into a triangular shape,” Stanley said. “It would look a lot more like a bird.” Oculudentavis’ birdlike skull proportions, however, do not indicate that it was related to birds, said study co-author Susan Evans, professor of vertebrate morphology and paleontology at University College London. “Despite presenting a vaulted cranium and a long and tapering snout, it does not present meaningful physical characters that can be used to sustain a close relationship to birds, and all of its features indicate that it is a lizard,” she said. While the two species’ skulls do not closely resemble one another at first glance, their shared characteristics became clearer as the researchers digitally isolated each bone and compared them with each other. The differences were minimized when the original shape of both fossils was reconstructed through a painstaking process known as retrodeformation, conducted by Marta Vidal-García from the University of Calgary in Canada. “We concluded that both specimens are similar enough to belong to the same genus, Oculudentavis, but a number of differences suggest that they represent separate species,” Bolet said. In the better-preserved O. naga specimen, the team was also able to identify a raised crest running down the top of the snout and a flap of loose skin under the chin that may have been inflated in display, Evans said. However, the researchers came up short in their attempts to find Oculudentavis’ exact position in the lizard family tree. “It’s a really weird animal. It’s unlike any other lizard we have today,” Daza said. “We think it represents a group of squamates we were not aware of.” The Cretaceous Period, 145.5 to 66 million years ago, gave rise to many lizard and snake groups on the planet today, but tracing fossils from this era to their closest living relatives can be difficult, Daza said. “We estimate that many lizards originated during this time, but they still hadn’t evolved their modern appearance,” he said. “That’s why they can trick us. They may have characteristics of this group or that one, but in reality, they don’t match perfectly.” The majority of the study was conducted with CT data created at the Australian Centre for Neutron Scattering and the High-Resolution X-ray Computed Tomography Facility at the University of Texas at Austin. O. naga is now available digitally to anyone with Internet access, which allows the team’s findings to be reassessed and opens up the possibility of new discoveries, Stanley said. “With paleontology, you often have one specimen of a species to work with, which makes that individual very important. Researchers can therefore be quite protective of it, but our mindset is ‘Let’s put it out there,'” Stanley said. “The important thing is that the research gets done, not necessarily that we do the research. We feel that’s the way it should be.” While Myanmar’s amber deposits are a treasure trove of fossil lizards found nowhere else in the world, Daza said the consensus among paleontologists is that acquiring Burmese amber ethically has become increasingly difficult, especially after the military seized control in February. “As scientists we feel it is our job to unveil these priceless traces of life, so the whole world can know more about the past. But we have to be extremely careful that during the process, we don’t benefit a group of people committing crimes against humanity,” he said. “In the end, the credit should go to the miners who risk their lives to recover these amazing amber fossils.” Other study co-authors are J. Salvador Arias of Argentina’s National Scientific and Technical Research Council (CONICET – Miguel Lillo Foundation); Andrej Cernansky of Comenius University in Bratislava, Slovakia; Aaron Bauer of Villanova University; Joseph Bevitt of the Australian Nuclear Science and Technology Organisation; and Adolf Peretti of the Peretti Museum Foundation in Switzerland. A 3D digitized specimen of O. naga is available online via MorphoSource. The O. naga fossil is housed at the Peretti Museum Foundation in Switzerland, and the O. khaungraae specimen is at the Hupoge Amber Museum in China. The specimen was acquired following the ethical guidelines for the use of Burmese amber set forth by the Society for Vertebrate Paleontology. The specimen was purchased from authorized companies that are independent from military groups. These companies export amber pieces legally from Myanmar, following an ethical code that ensures no violations of human rights were committed during mining and commercialization and that money derived from sales did not support armed conflict. The fossil has an authenticated paper trail, including export permits from Myanmar. All documentation is available from the Peretti Museum Foundation upon request. Reference: “Unusual morphology in the mid-Cretaceous lizard Oculudentavis” by Arnau Bolet, Edward L. Stanley, Juan D. Daza, J. Salvador Arias, Andrej Čerňanský, Marta Vidal-García, Aaron M. Bauer, Joseph J. Bevitt, Adolf Peretti and Susan E. Evans, 14 June 2021, Current Biology. DOI: 10.1016/j.cub.2021.05.040 Funding: National Science Foundation, Sam Houston State University, Royal Society, Spanish Ministry of Science, Innovation and Universities, CERCA Programme/Generalitat de Catalunya, Ministry of Education of the Slovak Republic and the Slovak Academy of Science
Stanford University researchers discovered a new cellular pathway that clears misfolded proteins from the nucleus, which could be targeted for age-related disease therapies. The pathway involves communication between the nucleus and the cytoplasm, and the clearing process depends on a class of proteins that create small vesicles for transporting molecules. New pathway reveals how misfolded proteins are cleared from the nucleus, offering insights for neurodegenerative disease treatments. Misfolded proteins pose a threat to cellular health, as they interfere with normal functions and contribute to age-associated degenerative conditions such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. The mechanisms by which cells eliminate these harmful proteins are not yet fully understood. A recent study, published on April 20 in Nature Cell Biology, reveals groundbreaking findings by Stanford University researchers. They uncovered a previously unidentified cellular pathway that facilitates the removal of misfolded proteins from the nucleus, where the cell’s DNA is stored, transcribed, and replicated. Maintaining the integrity of these processes is crucial for proper cellular function. This newly discovered pathway offers potential therapeutic targets for treating age-related diseases. To find the new pathway, researchers in the lab of Judith Frydman, the Donald Kennedy Chair in the School of Humanities and Sciences, integrated several genetic, imaging, and biochemical approaches to understand how yeast cells dealt with misfolded proteins. For the experiments, the team restricted misfolded proteins to either the nucleus or the cytoplasm – the area inside the cell but outside the nucleus. The team visually followed the fate of the misfolded proteins through live-cell imaging and super-resolution microscopy. A) A 3D reconstruction of a yeast cell engulfing cytoplasmic misfolded proteins (purple) inside of the degradation cellular machinery, or vacuole (gray). B) Super-resolution reconstructions showing nuclear misfolded proteins (green) being targeted to the degradation of cellular machinery through the nuclear-vacuolar junction (yellow). Credit: Fabián Morales-Polanco “The first exciting thing was that we actually found that there’s communication between the nucleus and the cytoplasm,” said Emily Sontag, the co-lead author of the paper and a former postdoctoral student in the Frydman Lab. “So they’re telling each other, ‘We both have a lot of misfolded proteins; let’s coordinate to send them here to this garbage dump so that they can be removed.’” The team identified the “garbage dump” site as the intersection of the nucleus and the vacuole – an organelle full of enzymes for degrading proteins – and showed that misfolded proteins in this “garbage dump” site are moved into the inside of the vacuole for degradation. They also showed that the pathway depends on a class of proteins used to create small vesicles for transporting molecules around cells. “Tying that particular family of proteins and this aspect of vesicle traffic biology to protein clearance gives us a new way to look at Alzheimer’s, Parkinson’s, Huntington’s – all these neurodegenerative diseases,” said Sontag. Shared ‘Garbage Dump’ Site for the Nucleus and the Cytoplasm Cells can deal with misfolded proteins in two ways: by refolding them or by eliminating them. A third option is to store them at a specific cellular location. “While the cell decides whether to refold or degrade proteins, it sequesters them into these membrane-less inclusions,” said Frydman, who is senior author of the paper. Inclusions are clusters of misfolded proteins that occur in both the cytoplasm and in the nucleus. The team found that the cellular machinery forms small misfolded-protein inclusions in different places within the nucleus and cytoplasm, like tiny garbage dumps, that then migrate toward the boundary between the nucleus and the vacuole, a bigger garbage dump. Eventually, the nuclear and cytoplasmic misfolded protein inclusions line up to face each other, with the nuclear envelope separating them. “The communication back and forth between the nucleus and the cytoplasm was not something we expected at all,” said Sontag. “Knowing that those two compartments can kind of work together to clear garbage from everywhere was really awesome.” “It shows that the management of misfolded proteins in the nucleus and the management of misfolded proteins in the cytoplasm are distinct but are coordinated,” said Frydman. “And what is really cool is that each compartment moves their misfolded proteins to the site where the nuclear envelope meets the vacuolar membrane.” From Dump Site to Degradation – a New Pathway The vacuole in yeast is equivalent to the lysosome in mammalian cells. It’s a membrane-bound organelle filled with enzymes that break down proteins – a recycling center for the cell. “This is not random,” said Fabián Morales-Polanco, the co-lead author of the paper and a postdoctoral scholar in the Frydman lab. “The cell is bringing inclusions to the same spot for a reason.” The team suspected that reason was to send the inclusions to the vacuole for degradation, but that raised further questions. It’s easy for cytoplasmic inclusions to enter the vacuole by autophagy – a process cells use to pull things from the cytoplasm into the vacuole or lysosome. But in the nucleus, inclusions are separated from the vacuole by the nuclear envelope. “Even though they come to the same spot, they don’t get into the vacuole by the same door,” said Morales-Polanco. To investigate the pathways of damaged proteins into the vacuole, the team blocked the proteasome – the other major protein clearance mechanism – and monitored the remaining protein clearance activity. They also created 3D images of the cells containing these misfolded protein inclusions using cryogenic soft X-ray tomography and fluorescence microscopy data. They found that the cytoplasmic inclusions did push into the vacuole, as expected. But the route for the nuclear inclusions was surprising. The nuclear inclusions budded straight from the nucleus into the vacuole at the junction of the two membranes. Using a series of genetic experiments, the team showed that ESCRT II/III and Vps4 proteins facilitated that budding-into-the-vacuole action. These proteins are known to cause membranes to bend and “bud,” or form new vesicles in other processes, but have not been studied as helping clear the nucleus of damaged proteins. They may be attractive therapy targets for misfolded protein diseases. Finally, using pH-sensitive tags, the team actually followed inclusions into the vacuole. “We were able to see these misfolded proteins entering into the vacuole and show this is really a new pathway,” said Morales-Polanco. An Eye on Aging The team did these experiments in yeast cells, which are easy to grow and quick to reproduce. One next step is to investigate whether this same pathway is used in mammalian cells to clear human disease-related proteins. Another next step is to define how the communication between the nucleus and cytosol happens along the pathway, and yet another is to see how the pathway is affected by aging. “There’s a lot of evidence that this process for dealing with misfolded proteins slows down with age,” said Sontag. “So, as time goes on, aged cells are not able to remove all that garbage as quickly or as efficiently, and misfolded proteins build up more and more inside the cell.” “We showed that nuclear and cytoplasmic quality control pathways communicate via the nuclear envelope, a structure that is impaired by aging and by neurodegenerative disease,” said Frydman. “Many progeria mutants, which cause premature aging, distort the nuclear envelope. This work really is a game changer in finally bringing a new way to understand, and hence cure, a wide range of terrible diseases that affect an increasingly aged population.” Reference: “Nuclear and cytoplasmic spatial protein quality control is coordinated by nuclear–vacuolar junctions and perinuclear ESCRT” by Emily M. Sontag, Fabián Morales-Polanco, Jian-Hua Chen, Gerry McDermott, Patrick T. Dolan, Daniel Gestaut, Mark A. Le Gros, Carolyn Larabell and Judith Frydman, 20 April 2023, Nature Cell Biology. DOI: 10.1038/s41556-023-01128-6 The study was funded by the National Institutes of Health, Way Klingler Faculty Development Awards from Marquette University, Pew Charitable Trusts, and the Gordon and Betty Moore Foundation.
RE98915RGPOIOKJ
頃刻間綠豆沙牛奶專賣店真的有誠意嗎? 》台北小吃餐廳推薦|實訪10家人氣名店完整評比,一篇搞懂聚餐怎麼選!饌堂-黑金滷肉飯(雙連店)吃過會回訪嗎? 》台北夜市高分美食推薦|10間絕對不踩雷饌堂-黑金滷肉飯(雙連店)份量有誠意嗎? 》台北美食特輯|10家真實體驗分享
限會員,要發表迴響,請先登入

