Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.


Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.



Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
Ergonomic insole ODM support Indonesia
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Taiwan OEM insole and pillow supplier
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.ESG-compliant OEM manufacturer in China
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Graphene insole OEM factory Indonesia
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Vietnam ergonomic pillow OEM supplier
Dragana Rogulja is a researcher who uses fruit flies and mice to delve into intriguing aspects of sleep, exploring its necessity for survival and the disconnection of the sleeping brain from the external world. Her investigations have revealed a crucial link between the brain and the gut, with potential implications for humans. Should her findings be applied to humans, they may pave the way for innovative approaches to enhance sleep quality and mitigate the negative effects of sleep deprivation. New Sleep Research Has Unveiled Surprising Links Between the Brain and the Gut Sleep holds paramount importance among human activities — its deficiency even for a single night can impede our cognitive functions, responsiveness, and overall daily performance. Despite its critical role in health and survival, the scientific understanding of sleep remains incomplete. Enter Dragana Rogulja, a neurobiologist on a quest to unravel the basic biology of sleep. As a self-described latecomer to science, Rogulja found herself drawn to questions she considers “broadly interesting and easy to understand on a basic human level.” One of these questions…What happens when we sleep? For Rogulja, an associate professor of neurobiology in the Blavatnik Institute at Harvard Medical School, an intriguing aspect of sleep is the loss of consciousness and awareness it brings, as the outside world disappears and the inner world takes over. In a conversation with Harvard Medicine News, Rogulja delved into the details of her sleep research, which uses fruit flies and mice to explore why we need to sleep and how we disconnect from the world during sleep. Harvard Medicine News: What are you studying in the context of sleep? Rogulja: There are two main questions that my lab has been pursuing for the past several years. The first is why sleep is necessary for survival. Why is it that if you don’t sleep, you will literally die after not too long? The other question is how your brain disconnects from the environment when you fall asleep. How are stimuli prevented from reaching your brain during sleep? Elevating the threshold for sensory arousal is essential for sleep, and we want to understand how that barrier is built around the brain. Sleep is one unified state, but it seems to have multiple components that are regulated through separate mechanisms. We want to understand those mechanisms. HMNews: How has your research changed how you think about sleep? Rogulja: For a long time, scientists have been guided by the principle that sleep is of the brain, by the brain, and for the brain. As a result, research has largely focused on the brain in terms of looking for reasons why sleep is necessary for survival. However, we are now realizing that while sleep may be for the brain, it’s not just for the brain. Sleep is a super old behavior that we think originated in the earliest animals. These animals had no brain; they only had a very simple nervous system. Then, as animals became more complex, these brain-related purposes of sleep evolved. However, researchers have looked at the brains of sleep-deprived animals to try to find a reason why they die, and they haven’t found anything. On the other hand, clinical data show that sleep deprivation in humans leads to all kinds of diseases in the body. To us, this really suggested that sleep is about more than just the brain. Our research tells us that we need to stop thinking about the brain separately from the body when it comes to sleep. I’m still shocked by the degree to which neuroscientists tend to think about the brain as having superiority over the body and being at the top of a hierarchy. To solve the biggest mysteries in neuroscience, we need to take a more integrated approach, which is what my lab is trying to do for sleep. We have found that we really need to think about the whole body to understand sleep. And it makes sense. When you go to sleep, your muscles relax, and your circulation changes. Of course, it’s about the whole body. HMNews: What tools do you use to study sleep? Rogulja: Historically, a lot of sleep research has been done on humans, but those experiments tend to be limited and descriptive, because you can’t really do experimentation on humans. However, over the last two and a half decades, scientists have come to realize that fruit flies sleep; and more recently, we figured out that the genes that regulate sleep in flies are conserved in mice. When I started my lab, we were only using fruit flies as a model system to study sleep, but we have since been able to establish a mouse model as well. Fruit flies allow us to test a lot of hypotheses quickly and do large, unbiased genetic screens, and then we can test what we find out in flies in mice, which, as mammals, are more similar to humans. HMNews: In your 2020 Cell paper, you tackled the question of why sleep is necessary for survival. What’s the answer? We found that fruit flies who slept less had shorter lifespans: We saw a correlation where the more sleep the flies lost, the faster they died. Interestingly, the mode of sleep deprivation did not matter. What mattered was the amount of sleep lost. There seemed to be an inflection point where sleep loss was associated with death, which told us that there might be something specific happening in the body as opposed to general wear and tear. To investigate this further, we stained different organs in sleep-deprived flies with markers of cell damage. We found that in the gut, there was an increase in oxidizing molecules, and the peak of oxidation correlated with the inflection point where the flies started to die. We confirmed this finding in sleep-deprived mice. But when we gave sleep-deprived flies antioxidants or turned on antioxidant-producing genes in the gut, we found the flies could survive on little or no sleep, suggesting that the gut is a really important target of sleep. HMNews: Are there any possible applications for humans? Our findings suggest that if we can prevent oxidation in the gut, we might be able to counteract the effect of losing sleep. This is important because a lot of diseases are tied to gut dysfunction, and many diseases that arise when you don’t sleep enough may actually be a consequence of gut damage. We’re now starting to think about how to diagnose gut oxidation due to lack of sleep in humans. We want to design “swallowables” — pills or tablets you could swallow that report the oxidative state of your gut by, for example, changing the color of your feces. We’re also looking for biomarkers: molecules already circulating in the body that indicate lack of sleep and gut oxidation. I have physicians in my lab who are profiling sleep-deprived mice to look for such biomarkers. We already have some molecules that are promising markers for oxidation and seem to decrease with antioxidant treatments. Eventually, it may be possible to design supplements that could be taken orally to reverse gut oxidation due to lack of sleep. HMNews: You just published a new paper in Cell that explores how the brain disconnects from the environment during sleep. Tell us more. Until now, we knew almost nothing about this. It wasn’t clear if there is a single place in the brain where all sensory information is attenuated during sleep, or if there are multiple such places. For example, are touch and temperature processed the same way during sleep? Iris Titos, a postdoctoral researcher in my lab, built a system that can deliver mild, medium, or high levels of vibration to fruit flies. Typically, when you use low-intensity vibrations, very few flies wake up, and when you use high-intensity vibrations, almost all the flies react. Then, we did a large-scale screen to identify genes that control how easily flies wake up — so genes that make flies super easy to wake up, and genes that allow flies to essentially sleep through an earthquake. HMNews: What did the genetic screen show? The results of the screen were very interesting. We identified a gene that codes for a molecule called CCHa1. When we depleted CCHa1 in the flies, they woke up very easily — so instead of 20 percent waking up at a particular level of vibration, 90 percent woke up. However, while CCHa1 is present in both the nervous system and the gut, it was only when we depleted it in the gut that flies were roused more easily. The cells in the gut that produce CCHa1 are called enteroendocrine cells, and they actually share many characteristics with neurons and can even connect and communicate with neurons. These cells face the inside of the gut, and they sort of “taste” the contents of the gut. We found that the higher concentration of protein in the diet, the more CCHa1 these gut cells produced. This molecule then travels from the gut to the brain, where it signals to a small group of dopaminergic neurons that also receive information about vibrations. These neurons produce dopamine, which usually promotes arousal, but in this case, suppresses arousal. Vibrations weaken the activity of the dopaminergic neurons, which causes the flies to wake up more easily. CCHa1 produced by the gut essentially buffers the dopaminergic neurons against vibrations, allowing the flies to ignore the environment to a greater degree and sleep more deeply. We also found that the CCHa1 pathway, while critical for gating mechanosensory information, has no influence on how easily the flies wake up when exposed to heat, suggesting that different sensory modalities such as vibration and temperature can be gated independently. Finally, we showed that a higher protein diet also improved the quality of sleep in mice, making them more resistant to mechanical disturbances. We are now testing whether a similar signaling pathway is involved in mice. HMNews: What do these findings tell you? Well, we know from other research that when animals are starving, they suppress sleep in order to forage. By contrast, when they’re satiated, and especially when they’re satiated with proteins, they tend to sleep more. Now, we’ve shown that when there’s more protein in the diet, animals also sleep more deeply and become less responsive. This suggests that if animals don’t need to look for food, they can disconnect from the environment and hide somewhere to sleep, which might be safer. More broadly, our study implies that dietary choices impact sleep quality. Now we can explore this connection in humans to understand how diet could be manipulated to improve sleep. HMNews: Is there anything about sleep that you think people often misunderstand? Rogulja: One thing that I think people should be aware of is that how we feel and what’s going on in our bodies don’t have to be the same. In our research, we found that it’s possible to separate the feeling of sleepiness from the need to sleep — some sleep-deprived animals didn’t necessarily feel sleepy, which we could tell because they didn’t sleep extra to catch up on sleep after the deprivation stopped, but these animals still died from the lack of sleep. This means that even if we can trick ourselves into not feeling sleepy, the lack of sleep still has negative effects on our bodies — for example, if you take a substance that makes you feel awake, the same amount of oxidation is going to happen in your gut. People may say that they’re OK with only a few hours of sleep a night, but they just mean that they can make it through the day. Their bodies are still going to register the lack of sleep. We really cannot tell what’s happening in our bodies as a result of sleep deprivation, and we probably need more sleep than we think we do. References: “A gut-secreted peptide suppresses arousability from sleep” by Iris Titos, Alen Juginović, Alexandra Vaccaro, Keishi Nambara, Pavel Gorelik, Ofer Mazor and Dragana Rogulja, 22 March 2023, Cell. DOI: 10.1016/j.cell.2023.02.022 Reference: “Sleep Loss Can Cause Death through Accumulation of Reactive Oxygen Species in the Gut” by Alexandra Vaccaro, Yosef Kaplan Dor, Keishi Nambara, Elizabeth A. Pollina, Cindy Lin, Michael E. Greenberg and Dragana Rogulja, 4 June 2020, Cell. DOI: 10.1016/j.cell.2020.04.049 Additional authors on the 2023 Cell paper include Alen Juginović, Alexandra Vaccaro, Keishi Nambara, Pavel Gorelik, and Ofer Mazor of HMS. The research was supported by the New York Stem Cell Foundation, the National Institutes of Health, and the Pew Scholars Program in the Biomedical Sciences.
The “ray gun” instrument, a spectroradiometer. Credit: Courtesy of Lance Stasinski In Star Trek, characters carry a little handheld device called a tricorder that they can point at objects to analyze and identify them. When the show’s writers cooked up the idea in the 1960s, it was purely science fiction, but a new paper in New Phytologist takes the idea a step closer to reality. The researchers used a handheld device that looks a little like a ray gun to record how plant leaves on different Alaskan mountains reflect light. And, it turns out, different populations of plants of the same species — for instance, plants living on neighboring mountaintops — reflect light differently, in ways that echo their genetic variation from each other. “While trained biologists can usually walk into the field and identify species with their eyes, it takes expensive genetic analyses to reveal the populations — groups of individuals of the same species within a gene pool — that are so important for conservation and evolutionary research,” . says Dawson White, a postdoctoral researcher at Chicago’s Field Museum and the study’s co-lead author. “In this new study, we’ve shown that you can use light instead of DNA to define plant populations, at a similar level of detail. This new method is a lot faster and cheaper than genetic testing, which could dramatically increase our efficiency at mapping and monitoring biodiversity.” Dryas plants on an Alaskan mountaintop. Credit: Courtesy of Catherine Chan “DNA is like an instruction manual on how to build an organism, and it turns out that this manual contains instructions for building and combining the smallest individual parts that make up that organism,” says Lance Stasinski, a graduate student researcher at the University of Maine and the paper’s other co-lead author. “We are able to use light that is reflected from these parts to determine which instruction manual was used to build the organism — even when the instruction manuals vary by only a handful of words.” All living things contain DNA, and the more similar two organisms’ DNA is, the more closely related to each other they are. That’s true both between and within species — your DNA is more similar to a chimpanzee’s than to a dog’s, because we’re more closely related to chimps, and your DNA is closer to your cousin’s than to a random stranger on the other side of the world. The same is true for plants: even within a single species, there are variations in DNA from one population to another. Genetic research has shown that sometimes these variations appear at a very fine scale — for instance, plants from one species on one mountaintop can form groups that have slightly different DNA than the plants on a mountaintop just a few miles away. When populations split like this, that means that they’re not sharing pollen or seeds with each other and are genetically isolated. Researcher Dawson White analyzing Dryas plants in Alaska. Credit: Courtesy of Dawson White Scientists study these differences in DNA to tell one plant population from another, but it’s an arduous task — they have to collect the plant samples, store them, get permits to move them to the lab, then go through the many steps to actually sequence the plant’s genetic code and compare them. It’s a process that takes weeks or even months. In this new study, however, the researchers have found another method to determine how closely related two plant populations are to each other, one that could eventually be done almost instantaneously out in the field. This is where the ray guns come in. Spectroradiometers are instruments that measure how much light reflects off a surface and what wavelengths that light contains. The instrument itself fits in a backpack, and there’s a handheld probe attached to a fiber optic cable that looks like a little ray gun. Agricultural scientists use these instruments to analyze the light bouncing back off of leaves to detect disease. But this new study revealed that the light bouncing off of leaves varies from one population of plants to the next. “Leaves have evolved to interact with light, and these machines are recording differences in the light after photons have entered the leaves and been absorbed or bounced around based on different chemistry and structure,” explains White. “This instrument reads the visible and infrared light that bounces back off of the leaf, and that information can give you a tremendous amount of information about the chemistry and structure of the leaf.” Researcher Catherine Chan analyzing Dryas plants in Alaska. Credit: Courtesy of Dawson White White and his colleagues from the Schoodic Institute and the University of Maine brought the spectrometer with them to alpine habitats in Alaska to study a small evergreen shrub called Dryas. They then scanned the plants’ leaves and collected samples of the plants so they could analyze the DNA later on. “Our fieldwork is aimed at collecting reflectance data on plant communities at many different scales, genotypes in this study and separate species or coarser plant functional types in other studies. We use these reflectance signatures of plants in many studies to map vegetation using our UAV-based imagery and NASA’s AVIRIS ng airborne sensor. More precise information from the ground and air about vegetation like this has many uses in these tundra, from quantifying wildlife habitat to inferring underground permafrost dynamics,” says Peter R. Nelson, forest ecology director at Schoodic Institute at Acadia National Park and associate faculty at the University of Maine, School of Forest Resources. The scientists found that from one mountaintop to the next, the leaves reflected back different amounts of light at different wavelengths. And, once they sequenced the plants’ genomes, they found that these differences in reflectances corresponded neatly with plants’ genetic differences. That means that looking at the light a plant reflects can be a quick, reliable substitute for lengthy genetic testing for researchers in the field trying to determine if a population of plants is genetically unique. “We were very surprised to find that the different mountaintops were genetically isolated, so they are not sharing pollen or seeds, and moreover, that we could detect these different mountaintops with genetics or this new spectral method,” says White. “The fact that leaf spectra capture genetic variation so well even in a biologically complicated scenario is incredibly promising. As the technology and models improve, we hope to be able to detect diversity using spectra measured from UAVs with the same levels of accuracy that we do using the backpack spectrometer.,” says Dudu Meireles, a professor at the University of Maine. Being able to tell one genetic population of plants from another could be critical for scientists working to preserve threatened populations. “Now that we understand that each one of these mountaintops is genetically unique, that means that there are implications for conservation,” says Rick Ree, a curator at the Field Museum and one of the study’s authors. “If we want to try and maintain genetic diversity through time, especially given the shrinking habitats of alpine ecosystems due to climate change, then the implication that we should be sampling from every mountaintop.” Reference: “Reading Light: Leaf spectra capture fine-scale diversity of closely-related, hybridizing arctic shrubs” by Lance Stasinski, Dawson M. White, Peter R. Nelson, Richard H. Ree and José Eduardo Meireles, 12 September 2021, New Phytologist. DOI: 10.1111/nph.17731
Newborns have five of the seven functional brain networks that adults have. Newborns possess five of the seven functional brain networks seen in adults. Control and limbic networks are absent at birth, indicating development through experience. Genetic variability may play a role in network organization, which could influence future behavior. Right from birth, human brains are organized into networks that support mental functions such as vision and attention, a new study shows. Previous studies had shown that adults have seven such functional networks in the brain. This study, the first to take a fine-grained, whole-brain approach in newborns, found five of those networks are operating at birth. “Our study shows variability in the brain at birth that may be related to some of the behavioral differences we see in adults.” Zeynep Saygin Individual Variability in Newborn Brain Networks Crucially, the study also found individual variability in those networks in newborns, which may have implications for how genetics affects behavior in adults. “For centuries, humans have wondered about what makes them unique and the role of genetic programming versus our lifetime of experience,” said Zeynep Saygin, senior author of the study and assistant professor of psychology at The Ohio State University. “Our study shows variability in the brain at birth that may be related to some of the behavioral differences we see in adults.” The study, published recently in the journal NeuroImage, was led by M. Fiona Molloy, a psychology graduate student at Ohio State. The researchers analyzed fMRI scans of the brains of 267 newborns, most less than a week old, who were part of the Developing Human Connectome Project. All infants were scanned for 15 minutes while they were asleep. The study involved analysis of the smallest bits of brain possible with MRI – called voxels or volumetric pixels – to see how the signals of each voxel were related to other voxels in the brain. “Even when we’re sleeping, the brain is active and different parts are communicating with each other,” Saygin said. “We identify networks by finding which parts of the brain show similar patterns of activity at the same time – for example when one area activates, the other does too. They are talking to each other.” Findings showed five networks in newborns that resembled those found in adults: the visual, default, sensorimotor, ventral attention, and high-level vision networks. Brain Networks Missing in Newborns: Control and Limbic Systems Adults have two additional networks not found in the brains of newborns: the control and limbic networks. These are both involved with higher-level functions, Saygin explained. The control network allows adults to make plans to meet goals. The limbic network is involved in emotional regulation. “Babies have little cognitive control and emotional regulation, so it is not surprising that these networks aren’t developed,” Saygin said. “But one possibility would have been that they are set up at birth and just need to be honed. That’s not what we found, though. Those networks are not there at all yet and must develop through experience.” The researchers also examined individual differences in the brain networks of the newborns studied. Results showed that the ventral attention network showed the most variability in the newborns. This is the network involved in directing attention to important stimuli encountered in the world, especially something that may be unexpected. “Our results suggest that the ventral attention network is a stable source of individual variability that exists at birth and perhaps persists through the lifetime,” she said. In adults, this individual variability in network organization has been linked to behavior and different disorders. “We see individual differences in network organization as early as birth, and it could be interesting to see if these differences predict behavior or risk of psychological disorders later in life,” Molloy said. Genetic Basis for Brain Organization in Newborns In another analysis, the researchers used tissue samples of human brains available through the Allan Human Brain Atlas to explore how differences in the brain networks in the newborns may be tied to differences in gene expression – the process of turning on or activating genes. They found multiple genes from the brain tissue samples that may have led to the specific brain organizations they found in individual newborns in the study. “This might uncover a potential genetic basis for why we’re seeing these differences in the networks of newborns in our study,” she said. Future research will examine how these networks develop over time to get a better understanding of the role of genetic programming and experience in producing variability in these networks. “We want to further understand the developmental trajectory of these networks to learn how genes and experience relate to future behavior and outcomes,” Saygin said. Reference: “Individual variability in functional organization of the neonatal brain” by M. Fiona Molloy and Zeynep M. Saygin, 15 March 2022, NeuroImage. DOI: 10.1016/j.neuroimage.2022.119101
DVDV1551RTWW78V
Flexible manufacturing OEM & ODM Taiwan 》empowering smart brands through better materials and processChina custom insole OEM supplier 》helping your business stand out with material and functional innovationLatex pillow OEM production in Thailand 》craftsmanship meets efficiency for maximum value
下一則: Taiwan graphene material ODM solution 》minimizing
限會員,要發表迴響,請先登入

