Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.


Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.



Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
Innovative pillow ODM solution in Indonesia
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Customized sports insole ODM China
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.China insole OEM manufacturer
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Ergonomic insole ODM support Thailand
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.PU insole OEM production in Taiwan
Clay sprayed on the ocean’s surface converts carbon into food for microscopic zooplankton. Credit: Mukul Sharma Utilizing zooplankton’s feeding habits, researchers aim to boost oceanic carbon sequestration by introducing clay particles to their diet, significantly speeding up the biological carbon pump. A study led by Dartmouth introduces a new method for recruiting trillions of microscopic sea creatures known as zooplankton to combat climate change. The approach involves converting carbon into food that these animals can eat, digest, and subsequently release as carbon-filled feces deep in the ocean. This method takes advantage of the zooplankton’s insatiable appetites to accelerate the ocean’s natural process of removing carbon from the atmosphere, a process referred to as the biological pump. This finding is detailed in a paper published in Nature Scientific Reports. Enhancing the Biological Pump It begins with spraying clay dust on the ocean’s surface at the end of algae blooms. These blooms can grow to cover hundreds of square miles and remove about 150 billion tons of carbon dioxide from the atmosphere each year, converting it into organic carbon particulates. But once the bloom dies, marine bacteria devour the particulates, releasing most of the captured carbon back into the atmosphere. The researchers found that the clay dust attaches to carbon particulates before re-entering the atmosphere, redirecting them into the marine food chain as tiny sticky pellets the ravenous zooplankton consume and later excrete at lower depths. A study led by Dartmouth researchers shows that microscopic marine animals called zooplankton (pictured) can be enticed to ingest organic carbon particulates in seawater that are later confined to the deep ocean in the animals’ feces. The researchers found that clay sprayed on the water’s surface bonds with the carbon, creating sticky balls that become part of the ravenous little creatures’ daily smorgasbord. Credit: Mukul Sharma/Dartmouth “Normally, only a small fraction of the carbon captured at the surface makes it into the deep ocean for long-term storage,” says Mukul Sharma, the study’s corresponding author and a professor of earth sciences. Sharma also presented the findings on Dec. 10 at the American Geophysical Union annual conference in Washington, D.C. “The novelty of our method is using clay to make the biological pump more efficient—the zooplankton generate clay-laden poops that sink faster,” says Sharma, who received a Guggenheim Award in 2020 to pursue the project. “This particulate material is what these little guys are designed to eat. Our experiments showed they cannot tell if it’s clay and phytoplankton or only phytoplankton—they just eat it,” he says. “And when they poop it out, they are hundreds of meters below the surface and the carbon is, too.” In lab experiments, the researchers found clay dust captured as much as 50% of organic carbon particulates before they could oxidize into carbon dioxide. This video shows that the sticky heavy flocs of clay and carbon (upper right) sink quickly, collecting more organic carbon as they fall through the water column. Credit: Mukul Sharma/Dartmouth Experimental Findings and Marine Impact The team conducted laboratory experiments on water collected from the Gulf of Maine during a 2023 algae bloom. They found that when clay attaches to the organic carbon released when a bloom dies, it prompts marine bacteria to produce a kind of glue that causes the clay and organic carbon to form little balls called flocs. The flocs become part of the daily smorgasbord of particulates that zooplankton gorge on, the researchers report. Once digested, the flocs embedded in the animals’ feces sinks, potentially burying the carbon at depths where it can be stored for millennia. The uneaten clay-carbon balls also sink, increasing in size as more organic carbon, as well as dead and dying phytoplankton, stick to them on the way down, the study found. The researchers’ method would spray clay dust on large blooms of microscopic marine plants called phytoplankton, which can cover hundreds of square miles and remove 150 billion tons of carbon dioxide from the atmosphere each year. But most of that carbon re-enters the atmosphere when the plants die. The researchers’ method diverts free-floating carbon into the marine food chain in the form of tiny sticky balls of clay and organic carbon called flocs (pictured) that are consumed by zooplankton or sink to deeper water. Credit: Mukul Sharma In the team’s experiments, clay dust captured as much as 50% of the carbon released by dead phytoplankton before it could become airborne. They also found that adding clay increased the concentration of sticky organic particles—which would collect more carbon as they sink—by 10 times. At the same time, the populations of bacteria that instigate the release of carbon back into the atmosphere fell sharply in seawater treated with clay, the researchers report. In the ocean, the flocs become an essential part of the biological pump called marine snow, Sharma says. Marine snow is the constant shower of corpses, minerals, and other organic matter that fall from the surface, bringing food and nutrients to the deeper ocean. “We’re creating marine snow that can bury carbon at a much greater speed by specifically attaching to a mixture of clay minerals,” Sharma says. First authors Diksha Sharma, left, and Vignesh Menon lead experiments on seawater collected from the Gulf of Maine during an algae bloom. Credit: Annie Kandel Prospects and Challenges for Field Application Zooplankton accelerate that process with their voracious appetites and incredible daily sojourn known as the diel vertical migration. Under cover of darkness, the animals—each measuring about three-hundredths of an inch—rise hundreds, and even thousands, of feet from the deep in one immense motion to feed in the nutrient-rich water near the surface. The scale is akin to an entire town walking hundreds of miles every night to their favorite restaurant. When the day breaks, the animals return to deeper water with the flocs inside them, where they are deposited as feces. This expedited process, known as active transport, is another key aspect of the ocean’s biological pump that shaves days off the time it takes carbon to reach lower depths by sinking. Earlier this year, study co-author Manasi Desai presented a project conducted with Sharma and fellow co-author David Fields, a senior research scientist and zooplankton ecologist at the Bigelow Laboratory for Ocean Sciences in Maine, showing that the clay flocs zooplankton eat and expel do indeed sink faster. Desai, a former technician in Sharma’s lab, is now a technician in the Fields lab. Sharma plans to field-test the method by spraying clay on phytoplankton blooms off the coast of Southern California using a crop-dusting airplane. He hopes that sensors placed at various depths offshore will capture how different species of zooplankton consume the clay-carbon flocs so that the research team can better gauge the optimal timing and locations to deploy this method—and exactly how much carbon it’s confining to the deep. “It is very important to find the right oceanographic setting to do this work. You cannot go around willy-nilly dumping clay everywhere,” Sharma says. “We need to understand the efficiency first at different depths so we can understand the best places to initiate this process before we put it to work. We are not there yet—we are at the beginning.” Reference: “Organoclay flocculation as a pathway to export carbon from the sea surface” by Diksha Sharma, Vignesh Gokuladas Menon, Manasi Desai, Danielle Niu, Eleanor Bates, Annie Kandel, Erik R. Zinser, David M. Fields, George A. O’Toole and Mukul Sharma, 10 December 2024, Scientific Reports. DOI: 10.1038/s41598-024-79912-z
Researchers at the University of Basel have developed a groundbreaking method to study bacterial communities, revealing how bacteria share resources and cooperate across generations. Using Bacillus subtilis as a model, the study highlights the benefits of communal living for bacteria and the complex dynamics within these communities. When bacteria build communities, they cooperate and share nutrients across generations. Researchers at the University of Basel have now successfully demonstrated this for the first time using a newly developed method. This innovative technique enables the tracking of gene expression during the development of bacterial communities over space and time. In nature, bacteria typically live in communities. They collectively colonize our gut, also known as the gut microbiome, or form biofilms such as dental plaque. Living communally offers numerous benefits to individual bacteria, such as increased resilience against harsh environmental conditions, expansion into new territories, and mutual advantages derived from shared resources. Bacterial Life in Communities The development of bacterial communities is a highly complex process where bacteria form intricate three-dimensional structures. In their latest study published on November 16 in the journal Nature Microbiology, the team led by Professor Knut Drescher from the Biozentrum of the University of Basel has investigated the development of bacterial swarm communities in detail. They achieved a methodological breakthrough enabling them to simultaneously measure gene expression and image the behavior of individual cells in microbial communities in space and time. Swarm of Bacillus subtilis bacteria on an agar plate. (Colorized image). Credit: University of Basel, Biozentrum Generational Resource Sharing “We used Bacillus subtilis as a model organism. This ubiquitous bacterium is also found in our intestinal flora. We have revealed that these bacteria, which live in communities, cooperate and interact with each other across generations,” explains Prof Knut Drescher, head of the study. “Earlier generations deposit metabolites for later generations.” They also identified different subpopulations within a bacterial swarm, which produce and consume different metabolites. Some of the metabolites secreted by one subpopulation become the food for other subpopulations that emerge later during swarm development. Task Distribution Within Bacterial Communities The researchers combined state-of-the-art adaptive microscopy, gene expression analyses, metabolite analyses, and robotic sampling. Using this innovative approach, the researchers have been able to simultaneously examine gene expression and bacterial behavior at precisely defined locations and specific times as well as to identify the metabolites secreted by the bacteria. The bacterial swarm could thus be divided into three major regions: the swarm front, the intermediate region, and the swarm center. However, the three regions display gradual transitions. “Depending on the region, the bacteria differ in appearance, characteristics, and behavior. While they are mostly motile at the edges, the bacteria in the center form long non-motile threads, resulting in a 3D biofilm. One reason is the varying availability of space and resources,” explains first author Hannah Jeckel. “The spatial distribution of bacteria with distinct behavior enables the community to expand but also to hide in a protective biofilm.” This process appears to be a widespread strategy in bacterial communities and is crucial for their survival. Dynamics and Survival Strategies in Bacterial Communities This study illustrates the complexity and dynamics within bacterial communities and reveals cooperative interactions among individual bacteria — in favor of the community. The spatial and temporal effects thus play a central role in the development and establishment of microbial communities. A milestone of this work is the development of a pioneering technique that enabled the researchers to acquire comprehensive spatiotemporal data of a multicellular process at a resolution never before achieved in any other biological system. Reference: “Simultaneous spatiotemporal transcriptomics and microscopy of Bacillus subtilis swarm development reveal cooperation across generations” by Hannah Jeckel, Kazuki Nosho, Konstantin Neuhaus, Alasdair D. Hastewell, Dominic J. Skinner, Dibya Saha, Niklas Netter, Nicole Paczia, Jörn Dunkel and Knut Drescher, 16 November 2023, Nature Microbiology. DOI: 10.1038/s41564-023-01518-4
Certain RNA molecules affected the ability of the cancer cells to repair radiation-damaged or broken DNA strings. A new study from Karolinska Institutet in Sweden shows how certain RNA molecules control the repair of damaged DNA in cancer cells, a discovery that could eventually give rise to better cancer treatments. The study is published today in the journal Nature Communications. It was long assumed that RNA molecules – basic molecules that exist in all living organisms – only participated in protein synthesis. New research demonstrates, however, that RNA molecules have a much broader function and can play a key role in the development of disease. One such disease is cancer, where damage to our cells’ DNA can be a contributing factor. DNA damage occurs and is repaired continuously, but in some cases it can lead to carcinogenic mutations in the genome. A fundamental understanding of how our cells repair DNA is therefore key to the design of new treatments. In this current study, the researchers examined how certain RNA molecules affected the ability of the cancer cells to repair radiation-damaged or broken DNA strings. They discovered that two molecule types – small Cajal body-specific RNA 2 (scaRNA2) and WRAP53 – interacted to regulate the enzyme DNA-dependent protein kinase (DNA-PK), which in turn affected the DNA-repair mechanisms. Works Like an “On-Off” Button “Our findings show that some RNA can bind to an enzyme that repairs damaged DNA and operate like an ‘on-off’ button for this enzyme, thereby controlling DNA repair,” says the study’s corresponding author Marianne Farnebo, researcher at the Department of Cell and Molecular Biology and the Department of Biosciences and Nutrition at Karolinska Institutet. “We’ve also discovered that altered levels of such RNA leads to faulty DNA repair in cancer cells.” The researchers hope that the results can enhance understanding of the part played by RNA in DNA repair and cancer. “This can open up new approaches to the treatment of cancer, such as using synthetic RNA molecules to stimulate cell death in cancer cells,” Marianne Farnebo says. The study was supported with grants from the Swedish Cancer Society, the Swedish Research Council, the Centre for Innovative Medicine, the Cancer Research Funds of Radiumhemmet, Karolinska Institutet, the strategic research program Cancer KI and the Wenner-Gren Foundations. Reference: “Small Cajal body-associated RNA 2 (scaRNA2) regulates DNA repair pathway choice by inhibiting DNA-PK” by Sofie Bergstrand, Eleanor M. O’Brien, Christos Coucoravas, Dominika Hrossova, Dimitra Peirasmaki, Sandro Schmidli, Soniya Dhanjal, Chiara Pederiva, Lee Siggens, Oliver Mortusewicz, Julienne J. O’Rourke and Marianne Farnebo, 23 February 2022, Nature Communications. DOI: 10.1038/s41467-022-28646-5
DVDV1551RTWW78V
ESG-compliant OEM manufacturer in Indonesia 》where every detail is tailored to your brandis identityMemory foam pillow OEM factory Thailand 》expert-level OEM/ODM to support product innovationPU insole OEM production in Thailand 》performance-first thinking from development to delivery
限會員,要發表迴響,請先登入

