早期熱力學專注在熱與功的轉換,研究熱機與冷凍機的轉換效率,發現有熱能耗損的現象;材料熱力學將重點放在物質的行為,觀察自然界事物的行為變化,從能量的觀點去討論狀態的平衡和變化,平衡和最低能量(或最大亂度)的關係,從材料科學來看:
Ex. 1. pure metal? Impurity會使能量下降,達成平衡的溶解度.
2. crystal defets, e.g. 1 c.c. ≈10²³ atoms
0-D point defect: impurity, vacancy 平衡濃度?
1-D dislocation, 2-D grain boundary屬於non-equilibrium 高能狀態
3. phase transformation, e.g. H₂O solid at -5℃, liquid at 20℃; α-Fe(BCC) → γ-Fe(FCC)能量決定存在狀態
4. Complex system? ← 找minimum E?
熱力學不涉及動力學,反應的快慢(反應速率)不討論,重點在反應是否會發生? 從能量的觀點!
巨觀現象屬古典熱力,所有組成平均的表現;微觀的粒子行為,屬統計熱力,講求粒子表現的分佈
§ law, 能量變化的法則
1st law: U=Q-W, W>0 work done by system. Q(heat) →→engine→→ W(work)
∆U=U₂-U₁, dU=δQ-δW
U: 狀態函數,與路徑無關; Q,W: process variables, 與路徑有關 ∆Q=∫ₚₐₜₕδQ
可逆: δWᵣₑᵥ≡PdV 『能量守恆』觀念
2nd law: 能量轉變中,熱會耗散無法100%轉換成⸢功⸥
Max. entropy S, ∆Suniverse≥0, dS≡δQᵣₑᵥ/T Universe看成isolated system, 沒有能量與質量的轉換,亦即U, V固定 →→ ∆Sᴜ,ᴠ ≥0
統計上定義: S≡klnΩ, k=1.38∙10⁻²³
小結: 1st law: ∆U=∆Q-∆W or dU=δQ-δW
2nd law: ∆Sᴜ,ᴠ≥0, dS≡δQᵣₑᵥ/T: state function, ∆S=S₂-S₁=∫₁²dS, ∮dS=0 cycle.
Reversible process: 虛擬的, no dissipation, no permanent change in univere, no entropy production, ∆Sprod=0
entropy統計上定義: S≡klnΩ, k=1.38∙10⁻²³J/K, Nᴀ∙k=R Nᴀ=6.02∙10²³
Ω: # of available microstates, 有關於粒子在能量和空間的分布
S: distribution randomness of a system, thermal entropy related to distribution in energy level; configurationentropy related to distribution in space(position).
2nd law: ∆Sᴜ,ᴠ≥0 當∆Sᴜ,ᴠ=0 表示S達到最大,處於平衡狀態,也可以將亂度最大的概念轉換成能量最小的觀點,來判斷是否平衡. 例如: ∆Uₛ,ᵥ≤0, ∆Hₛ,ₚ≤0, ∆Aᴛ,ᵥ≤0, ∆Gᴛ,ₚ≤0 同時操作變數以T,P最容易討論
state 1 → state 2 at (T,P) ∆G=G₂-G₁<0 or ∆G=0 in equilibrium.
3rd law: T →0, S₀→0 *all substance being complete internal equilibrium and homogeneous.
entropy有絕對值, 能量只有相對值(e.g. 參考點at 298K).
§ definition of exp. Parameters and energy functions
thermal expansion coeff. α=1/V∙(∂V∕∂T)ₚ isobaric
compresibility β=-1/V∙(∂V∕∂P)ᴛ isothermal
heat capacity, c≡ δQᵣₑᵥ/dT, cₚ≡ (δQᵣₑᵥ/dT)ₚ δQᵣₑᵥ=cₚdT=dHₚ
cᵥ≡ (δQᵣₑᵥ/dT)ᵥ δQᵣₑᵥ=cᵥdT=dUᵥ
e.g. dHₚ=cₚdT, T₁→T₂ at P=1 atm ∆Hₚ=∫₁²dHₚ=∫ᴛ₁ᵀ²cₚdT cₚ(T)=? 量測 cₚ=a+bT+c/T² 實驗式
1st + 2nd law dU=δQ-δW → dU=TdS-PdV
enthalpy H≡U+PV dH=TdS+VdP dHₚ=(δQᵣₑᵥ)ₚ=(TdS)ₚ → ∆S=∫₁²dS=∫ᴛ₁ᵀ²(cₚ/T)dT
Helmholtz free E. A≡U-TS dA=-SdT-PdV
Gibbs free E. G≡H-TS=U+PV-TS dG=-SdT+VdP
fundamental eq. Coeff. Relation Maxwell relation
dU=TdS-PdV T=(∂U∕∂S)ᵥ, -P=(∂U∕∂V)ₛ (∂T∕∂V)ₛ= -(∂P∕∂S)ᵥ
dH=TdS+VdP T=(∂H∕∂S)ₚ, V=(∂H∕∂P)ₛ (∂T∕∂P)ₛ=(∂V∕∂S)ₚ
dA=-SdT-PdV -S=(∂A∕∂T)ᵥ, -P=(∂A∕∂V)ᴛ (∂S∕∂V)ᴛ=(∂P∕∂T)ᵥ
dG=-SdT+VdP -S=(∂G∕∂T)ₚ, V=(∂G∕∂P)ᴛ -(∂S∕∂P)ᴛ=(∂V∕∂T)ₚ
*用PV, TS的能量關係去check是否寫對 *抽象的數學式可轉換成可量的物理量
Gibbs-Helmholtz eq. [∂(∆G/T)∕∂T]ₚ=-∆H/T²
e.g. given G(T) → calculate H(T)=? H=-T²[∂(∆G/T)∕∂T]ₚ
在計算能量變化的實驗,最容易操作的變數: (T,P), 所以衍生出以(T,P)為函數的能量推導公式
a. V=V(T,P) e.g. (T₁,P₁) → (T₂,P₂) ∆V=∫?dV
dV=(∂V∕∂T)ₚdT+(∂V∕∂P)ᴛdP ⸪ α=1/V∙(∂V∕∂T)ₚ, β=-1/V∙(∂V∕∂P)ᴛ ⸫dV=αVdT-βVdP
∆V=∫dV=∫ᴛ₁ᵀ²αVdT-∫ᴘ₁ᴾ²β VdP
b. S=S(T,P) → dS=(∂S∕∂T)ₚdT+(∂S∕∂P)ᴛdP → dS=cₚ/TdT-αVdP
⸪cₚ≡ (δQᵣₑᵥ/dT)ₚ=(TdS/dT)ₚ ⸫(∂S∕∂T)ₚ=cₚ/T and (∂S∕∂P)ᴛ=-(∂V∕∂T)ₚ=-αV
c. H=H(T,P) → dH=TdS+VdP=T(cₚ/TdT-αVdP)+VdP ⸫dH=cₚdT+V(1-αT)dP
d. dG=-SdT+VdP
e.g. (T₁,P₁) → (T₂,P₂) ∆S=∫ᴛ₁ᵀ²(cₚ/T)dT-∫ᴘ₁ᴾ²αVdP, ∆H=∫ᴛ₁ᵀ²cₚdT+∫ᴘ₁ᴾ²V(1-αT)dP, ∆G=-∫ᴛ₁ᵀ²SdT+∫ᴘ₁ᴾ²VdP
實際上 P₁=P₂=1 atm(fixed P), ∆S=S₂-S₁=∫ᴛ₁ᵀ²(cₚ/T)dT, ∆H=H₂-H₁=∫ᴛ₁ᵀ²cₚdT, ∆G=-∫ᴛ₁ᵀ²SdT
e.g. given T₁, S₁, H₁ → calculate S₂, H₂ at T₂
S₂=S₁+∫ᴛ₁ᵀ²(cₚ/T)dT, H₂=H₁+∫ᴛ₁ᵀ²cₚdT reference: T₁=298K, S₁查表, H₁≡0(pure substance)
G(T)=H(T)-T∙S(T), cₚ=a+bT+c/T² 係數查表
Reactions: (i) s → l melting ∆cₚ=cₚ₍ₗ₎-cₚ₍ₛ₎ (ii) l → g evaporation ∆cₚ=cₚ₍ᵍ₎-cₚ₍ₗ₎ (iii) A+B=C+D
∆cₚ=(cₚ₍ᴄ₎+cₚ₍ᴅ₎)-(cₚ₍ᴀ₎+cₚ₍ᴃ₎), given T₁, ∆S₁, ∆H₁ → calculate ∆S₂, ∆H₂, ∆G₂ at T₂
∆S₂(T)=∆S₁+∫ᴛ₁ᵀ²(∆cₚ/T)dT, ∆H₂(T)=∆H₁+∫ᴛ₁ᵀ²∆cₚdT, ∆G(T)=∆H(T)-T∙∆S(T)
Ex. 1 mole 水, given: cₚ₍ₛ₎=38J/Kmole, cₚ₍ₗ₎=75.44J/Kmole, cₚ₍ᵍ₎=30+10.7∙10⁻³T+0.33∙10⁵T⁻², ∆Hₘ=6008J/mole, ∆Hᵇ=41090J, ρ₍ₛ₎=0.9 g/cm³, ρ₍ₗ₎=1.0 g/cm³. At 298K, S₍ₛ₎=44.77, S₍ₗ₎=70.08
Q1: H₍ₗ₎₂₇₀=H₍ₗ₎₂₉₈+∫₂₉₈²⁷⁰cₚ₍ₗ₎dT=75.44(270-298)=-2112.32J/mole i.e. H₍ₗ₎₂₉₈=0
Q2: H₍ₛ₎₂₇₀=? → H₍ₛ₎₂₇₀+∫₂₇₀ᵀᵐcₚ₍ₛ₎dT+∆Hₘ+∫ᴛₘ²⁹⁸cₚ₍ₗ₎dT=H₍ₗ₎₂₉₈=0, H₍ₛ₎₂₇₀=-8008J/mole
Q3: H₍ₛ₎₂₉₈=? → H₍ₛ₎₂₉₈+∫₂₉₈²⁷⁰cₚ₍ₛ₎dT=H₍ₛ₎₂₇₀, H₍ₛ₎₂₉₈=-7058J/mole
Q4: ∆Hₘ₂₇₀=? ∆Hₘ(T)=∆Hₘ₂₇₃+∫₂₇₃ᵀ∆cₚdT, ∆cₚ=cₚ₍ₗ₎-cₚ₍ₛ₎ ∆Hₘ₂₇₀=5895.68J/mole
Q5: ∆Sₘ₂₇₀=? ∆Sₘ₂₇₀=∆Sₘ+∫₂₇₃ᵀ(∆cₚ/T)dT, Tₘ=273K ∆Gₘ=∆Hₘ-Tₘ∙∆Sₘ=0, ∆Sₘ=22J/moleK
Q6: G₍ₗ₎(T)=? G(T)≡H(T)-T∙S(T)
H₍ₗ₎(T)=H₍ₗ₎₂₉₈+∫₂₉₈ᵀcₚ₍ₗ₎dT=75.44(T-298), S₍ₗ₎(T)=S₍ₗ₎₂₉₈+∫₂₉₈ᵀ(cₚ₍ₗ₎/T)dT=70.08+75.44ln(T/298)
⸫G₍ₗ₎(T)=75.44(T-298)-70.08T-75.44Tln(T/298)
同理, G₍ₛ₎(T)=-6944+38(T-298)-44.7T-38Tln(T-298), at Tₘ, G₍ₗ₎=G₍ₛ₎ Tₘ=271.9K
Q7: P=100atm, Tₘ=?
α → β at Tαβ and P=1atm, Tαβ=? as P=P (dP/dT)eq=∆Sαβ∕∆Vαβ=∆Hαβ∕T∆Vαβ...Clapeyron eq.
⸫ dP/dT=∆Hₘ/T∆Vₘ → ∫ᴘ=1ᴾdP=∫ᴛₘᵀᵐ(∆Hₘ/T∆Vₘ)dT=∆Hₘ/∆Vₘln(Tₘ/273),
i.e. ∆Hₘ(T)=∆Hₘ₂₇₃+∫₂₇₃ᵀ∆cₚdT≈∆Hₘ₂₇₃, ∆Vₘ=V₍ₗ₎-V₍ₛ₎=(M/ρ₍ₗ₎-M/ρ₍ₛ₎)=-2.0 cm³/mole
→ (100-1)=-6008/2∙ln(Tₘ/273), Tₘ≈272K P上升,Tₘ下降 ⸪∆Vₘ=V₍ₗ₎-V₍ₛ₎<0
Q8: Equil. Vapor pressure at T≠100℃, P(T)=? l → g
dP/dT=∆Hₗᵍ/T∆Vₗᵍ≈∆Hₗᵍ/TV₍ᵍ₎=P∆Hₗᵍ/RT² ⸪∆Vₗᵍ=V₍ᵍ₎-V₍ₗ₎≈V₍ᵍ₎=RT/P
dP/P=(∆Hₗᵍ/RT²)dT ⸫ dlnP=(∆Hₑᵥₐₚ/RT²)dT....Clausius-clapeyron eq.
∫ln1=0lnPdlnP=∫ᴛᵇᵀ(∆Hₑᵥₐₚ/RT²)dT,
∆Hₑᵥₐₚ(T)=∆Hᵇ+∫ᴛᵇᵀ∆cₚdT, ∆cₚ=cₚ₍ᵍ₎-cₚ₍ₗ₎=-45.44+10.7∙10⁻³T+0.33∙10⁵T⁻²
→ ∆Hₑᵥₐₚ(T)=-57383-45.44T+5.35∙10⁻³T²- 0.33∙10⁵T⁻¹
再除以RT² →積分→lnP=-6902/T-5.465lnT+6.434∙10⁻⁴T+19.85T⁻²+50.61 theoretical vapor pressure
§criteria for thermodynamic equilibrium
2nd law: ∆Sᴜ,ᴠ≥0 ↔ Sᴜ,ᴠ=Sₘₐₓ, 將第二定律entropy增加的條件轉換成能量下降的條件,方便操作!
dUS,ᴠ≤0, US,ᴠ=Uₘᵢₙ; dHS,ᴩ≤0, HS,ᴩ=Hₘᵢₙ; dAᴛ,ᴠ≤0, Aᴛ,ᴠ=Aₘᵢₙ; dGᴛ,ᴘ≤0, Gᴛ,ᴘ=Gₘᵢₙ