Contents ...
udn網路城邦
固態物理: 晶體結構
2017/10/16 22:54
瀏覽1,177
迴響0
推薦0
引用0

Chap. 1 crystal structure

Crystal structure: an ideal crystal is constructed by an infinite repeatition in space of identical structure units.

Lattice—點之間的關係

r=r+ua+ua+ua (a) u1,u2,u3 are integrals

Crystal lattice={lattice point}={r|r=r+ua+ua+ua}

  1. primitive axes—a, a, a primitive translational vector, any two points 之間rr滿足(a).

  2. Primitive cell—the parallepiped defined by primitive axesa, a, a is called a primitive cell. 只有一個lattice point, Vc=|aaa|若是primitive cell, 體積是最小的

Another way of choosing a primitive cell: Wigner-Seitz cell

Basis—atom array in a cell

crystal structure=lattice+basis, rj=xja+yja+zja xj≤1, yj≤1, zj≤1cell內部

Fundamental types of lattices

Symmetry operators—the symmetry operators of a crystal carry the crystal structure into itself.

  1. lattice translation T=ua+ua+ua

  2. mirror reflection

  3. inversion: r→-r

  4. rotation

角度限制

60

90

120

180

360

對稱性

6 fold

4

3

2

1

,2的旋轉,任何lattice均不變

Bravais lattice: 5 2-D and 14 3-D

2-D lattice a1,a2, 表示

i) oblique: a1a2, 90, ii) square: a1=a2, =90 iii) hexagonal: a1=a2, =120 iv) rectangular: a1a2, =90, v) centered rectangular: a1a2, =90

3-D latticea1,a2,a3,,, 表示7 systen/14 types

  1. one fold 對稱, Triclinic a1a2a3,  P(1)

  2. Monoclinic a1a2a3, ==90 P, C(2)

  3. Orthorhombic a1a2a3, ===90 P, C, I, F(4)

  4. Tetragonal a1=a2a3, ===90 P, I(2)

  5. Cubic a1=a2=a3, ===90 P, I, F(3)

  6. Trigonal a1=a2=a3, ==<12090 P(1)

  7. Hexagonal a1a2a3, ==90, =120 P(1)

Cubic lattice

  1. S.C.(Simple cubic)

  2. B.C.C.(Body centered cubic)

  3. F.C.C.(Face centered cubic)

Number of nearest neighbors and its distance

(i)S.C.: (6, a) (ii)B.C.C.: (8, 3a/2 ) (iii)F.C.C.: (12, 2a/2 )

Volume of primitive cell

  1. S.C.: a3

  2. B.C.C.: a=½a(i+j-k), a=½a(-i+j+k), a=½a(i-j+k)

V=|aaa|=(a/2)³ = a³/2

  1. F.C.C.: a=½a(i+j), a=½a(j+k), a=½a(i+k) V=|aaa|=(a/2)³  =a³/2

Packing fraction(p.f.): the maximum proportion of the available volume that an be filled with hard spheres.

  1. S.C.: volume of a sphere=4π/3(a/2)³, number of hard sphere in a cubic cell=1, volume of cell=a3. p.f.= [4π/3(a/2)³]/a³=π/6=0.524=52.4%

  2. B.C.C.: volume of a sphere=4π/3(√3a/4)³ , number of hard sphere in a cubic cell=2, volume of cell=a3. p.f.= 2[4π/3(√3a/4)³]/a³=√3π/8=0.68=68%

Miller indices:   1/X:1/X₂:1/X₃=h:k:lplane’s indices=(h,k,l)

direction: [u,v,w]=ua1+va2+wa3

* only in cubic system, [h,k,l](h,k,l)

{1,0,0} includes (1,0,0), (-1,0,0), (0,1,0), (0,-1,0), (0,0,1), (0,0,-1)

Simple crystal structure

  1. NaCl structure: crystal structure=lattice + basis, space lattice: F.C.C. and basis: two atoms. Cl- :(0,0,0), Na+:(½, ½, ½)

  2. CsCl structure: space lattice: S.C. and basis: two atoms. Cs+:(0,0,0), Cl-:(½, ½, ½)

  3. hexagonal close-paced structure has maximum packing factor.

  4. Diamond: space lattice: F.C.C.(兩個F.C.C.交錯) and basis: two atoms. (0,0,0), (¼,¼,¼), 4 neighbor atoms.

In cubic system, the direction[h,k,l] is perpendicular to (h,k,l)

A=ha+ka+la, AB=0B-0A=a/k-a/h, AC=0C-0A=a/l-a/h,

N=ACAB=(1/hkl)[laa+kaa+haa]

[h,k,l]plane(h,k,l) N // A

m(aa)=a, n(aa)=a, p(aa)=a

aa=0, aa=0 a, a, a is orthorgonal.

a=m(aa)=m(aa₃/a)am=a₁/aa₃, n=a₂/aa₃, p=a₃/aa N=nA, nR N=(1/hkl)[l(aa₂/a)a+k(aa₃/a)a+h(aa₃/a)a] h:k:l=h(aa₃/a):k(aa₃/a):l(aa₂/a)

tell us aa₃/a₁=aa₃/a₂=aa₂/a₃ → a1=a2=a3

所以cubic system a1=a2=a3, ===90, [h,k,l](h,k,l)










全站分類:知識學習 隨堂筆記
自訂分類:材料科學
發表迴響

會員登入