A question about determinant
2017/08/02 01:19
瀏覽83
迴響0
推薦0
引用0
標題:
A question about determinant
發問:
Simplify the determinant a+b__c___c a___b+c__a b____b__c+a without direct expansion.
= | 0 - 2b - 2a | (R1 - R2 - R3) to R1 | a b + c a | | b b c + a | = 2 | 0 - b - a | | a b + c a | | b b c + a | = 2 | 0 0 - a | (C2 - C3 x b/a) to C2 | a (b + c) - b a | | b b - b(c + a)/a c + a | = - 2 a | a c | | b - bc/a | = - 2 a ( - bc - bc) = (-2a)(-2bc) = 4abc.
其他解答:
A question about determinant
發問:
Simplify the determinant a+b__c___c a___b+c__a b____b__c+a without direct expansion.
- Agnes b 袋 幾問 (20 點 x 2 = 40點)
- What is the answer of this fomula-
- 中國北方d女人靚d or 香港d女人靚d-_0
- [急] agnes b & roxy袋一問 thz
- 點解yahoo e-mail入吾到--
此文章來自奇摩知識+如有不便請留言告知
最佳解答:= | 0 - 2b - 2a | (R1 - R2 - R3) to R1 | a b + c a | | b b c + a | = 2 | 0 - b - a | | a b + c a | | b b c + a | = 2 | 0 0 - a | (C2 - C3 x b/a) to C2 | a (b + c) - b a | | b b - b(c + a)/a c + a | = - 2 a | a c | | b - bc/a | = - 2 a ( - bc - bc) = (-2a)(-2bc) = 4abc.
其他解答:
你可能會有興趣的文章:
限會員,要發表迴響,請先登入