Contents ...
udn網路城邦
Insole ODM factory in Indonesia 》offering full-ser
2025/05/02 12:20
瀏覽24
迴響0
推薦0
引用0

Introduction – Company Background

GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.

With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.

With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.

From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.

At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.

By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.

Core Strengths in Insole Manufacturing

At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.

Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.

We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.

With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.

Customization & OEM/ODM Flexibility

GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.

Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.

With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.

Quality Assurance & Certifications

Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.

We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.

Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.

ESG-Oriented Sustainable Production

At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.

To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.

We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.

Let’s Build Your Next Insole Success Together

Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.

From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.

Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.

🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw

 

Vietnam custom neck pillow ODM

Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.

With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Smart pillow ODM manufacturer Indonesia

Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.

We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Graphene insole OEM factory Vietnam

At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Memory foam pillow OEM factory Taiwan

📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.ODM ergonomic pillow solution factory Taiwan

Researchers at the Duke Lemur Center have been changing up their care to more closely match the seasonal fluctuations they experience in the wild. Credit: Photo by David Haring, Duke Lemur Center Duke Lemur Center recreates the seasonal swings of native habitat, helping to unlock the secrets of hibernation. If you binged on high-calorie snacks and then spent the winter crashed on the couch in a months-long food coma, you’d likely wake up worse for wear. Unless you happen to be a fat-tailed dwarf lemur. This squirrel-sized primate lives in the forests of Madagascar, where it spends up to seven months each year mostly motionless and chilling, using the minimum energy necessary to withstand the winter. While zonked, it lives off of fat stored in its tail. Animals that hibernate in the wild rarely do so in zoos and sanctuaries, with their climate controls and year-round access to food. But now our closest hibernating relative has gone into true, deep hibernation in captivity for the first time at the Duke Lemur Center. “They did not disappoint,” said research scientist Marina Blanco, who led the project. “Indeed, our dwarf lemurs hibernated just like their wild kin do in western Madagascar.” Why Hibernation Matters—for Lemurs and Humans The researchers say recreating some of the seasonal fluctuations of the lemurs’ native habitat might be good for the well-being of a species hardwired for hibernation, and also may yield insights into metabolic disorders in humans. “Hibernation is literally in their DNA,” Blanco said. Because dwarf lemurs are a closer genetic match to humans than other hibernators, such as bears and bats, researchers say studying their torpor may help humans safely enter and emerge from similar suspended states during surgery. Credit: Lydia Greene Blanco has studied dwarf lemurs for 15 years in Madagascar, fitting them with tracking collars to locate them when they are hibernating in their tree holes or underground burrows. But what she and others observed in the wild didn’t square with how the animals behaved when cared for in captivity. Can Captive Lemurs Still Hibernate? Captive dwarf lemurs are fed extra during the summer so they can bulk up like they do in the wild, and then they’ll hunker down and let their heart rate and temperature drop for short bouts — a physiological condition known as torpor. But they rarely stay in this suspended state for longer than 24 hours. Which got Blanco wondering: After years in captivity, do dwarf lemurs still have what it takes to survive seasonal swings like their wild counterparts do? And what can these animals teach us about how to safely put the human body on pause too, slowing the body’s processes long enough for, say, life-saving surgery or even space travel? To find out, Duke Lemur Center staff teamed up to build fake tree hollows out of wooden boxes and placed them in the dwarf lemurs’ indoor enclosures, as a haven for them to wait out the winter. To mimic the seasonal changes the lemurs experience over the course of the year in Madagascar, the team also gradually adjusted the lights from 12 hours a day to a more “winter-like” 9.5 hours, and lowered the thermostat from 77 degrees Fahrenheit (25 degrees Celsius) to the low 50s. Like other hibernators, dwarf lemurs gorge on fruit and nearly double their weight before winter hibernation. Much of this extra body fat is stored in their tails, giving the fat-tailed dwarf lemur its name. Credit: David Haring The animals were offered food if they were awake and active, and weighed every two weeks, but otherwise, they were left to lie. It worked. In the March 11, 2021, issue of the journal Scientific Reports, the researchers show for the first time that fat-tailed dwarf lemurs can hibernate quite well in captivity. For four months, the eight lemurs in the study spent some 70% of their time in metabolic slow-motion: curled up, cool to the touch, barely moving or breathing for up to 11 days at a stretch, showing little interest in food — akin to their wild counterparts. Now that spring is afoot in North Carolina and the temperatures are warming, the lemurs are waking up. Their first physical exams after they emerged showed them to be 22% to 35% lighter than they were at the start but otherwise healthy. Their heart rates are back up from just eight beats per minute to about 200, and their appetites have returned. “We’ve been able to replicate their wild conditions well enough to get them to replicate their natural patterns,” said Erin Ehmke, who directs research at the center. Females were the hibernation champs, out-storing the males and maintaining more of their winter weight. They need what’s left of their fat stores for the months of pregnancy and lactation that typically follow after they wake up, Blanco said. Hibernation as a Human Health Blueprint Study co-author Lydia Greene says the next step is to use non-invasive research techniques such as metabolite analysis and sensors in their enclosures to better understand what dwarf lemurs do to prepare their bodies and eventually bounce back from months of standby mode — work that could lead to new treatments for heart attacks, strokes, and other life-threatening conditions in humans. Blanco suspects the impressive energy-saving capabilities of these lemurs may also relate to another trait they possess: longevity. The oldest dwarf lemur on record, Jonas, died at the Duke Lemur Center at the age of 29. The fact that dwarf lemurs live longer than non-hibernating species their size suggests that something intrinsic to their biological machinery may protect against aging. “But until now, if you wanted to study hibernation in these primates, you needed to go to Madagascar to find them in the act,” Blanco said. “Now we can study hibernation here and do more close monitoring.” Reference: “On the modulation and maintenance of hibernation in captive dwarf lemurs” by Marina B. Blanco, Lydia K. Greene, Robert Schopler, Cathy V. Williams, Danielle Lynch, Jenna Browning, Kay Welser, Melanie Simmons, Peter H. Klopfer and Erin E. Ehmke, 11 March 2021, Scientific Reports. DOI: 10.1038/s41598-021-84727-3 This research was supported by the Duke Lemur Center.

Two DBS leads implanted into the subcallosal cingulate cortex, with nerve fibers extending into other brain regions. Brain activity signatures or biomarkers can help scientists track depression symptoms and optimize DBS techniques. Credit: Ki Seung Choi/Mayberg lab, Icahn School of Medicine at Mount Sinai New deep brain stimulation device coupled with powerful AI may improve therapy for treatment-resistant depression. Using a novel deep brain stimulation (DBS) device capable of recording brain signals, researchers have identified a pattern of brain activity or “biomarker” related to clinical signs of recovery from treatment-resistant depression. The findings from this small study are an important step towards using brain data to understand a patient’s response to DBS treatment. The study was published in Nature and supported by the National Institutes of Health’s Brain Research Through Advancing Innovative Neurotechnologies® Initiative, or The BRAIN Initiative®. Clinical Application of DBS Although the approach is still experimental, clinical research shows that DBS can be used safely and effectively to treat cases of depression in which symptoms have not improved with antidepressant medications, referred to as treatment-resistant depression. People receiving DBS undergo surgery to have a thin metal electrode implanted into specific brain areas to deliver electrical impulses that modulate brain activity. How exactly DBS improves symptoms in people with depression is not well understood, which has made it difficult for researchers to objectively track patients’ response to treatment and adjust as needed. The small study enrolled 10 adults with treatment-resistant depression, all of whom underwent DBS therapy for six months. Each participant received the same stimulation dose to begin and then stimulation levels were increased once or twice. Later, researchers used artificial intelligence (AI) tools to analyze collected brain data from six patients and observed a common brain activity signature or biomarker that correlated with patients self-reporting feeling symptoms of depression or stable as they recovered. In one patient, researchers identified the biomarker and were retrospectively able to predict that a patient would fall back into a major depressive episode four weeks before clinical interviews showed they were at risk of a relapse occurring. Refining DBS Therapy “This study demonstrates how new technology and a data-driven approach can refine DBS therapy for severe depression, which can be debilitating,” said John Ngai, Ph.D., director of the BRAIN Initiative. “It’s this type of collaborative work made possible by the BRAIN Initiative that moves promising therapies closer to clinical use.” In the study, patients received DBS targeting the subcallosal cingulate cortex (SCC), a brain region that regulates emotional behavior and is involved in feelings of sadness. DBS of the SCC is an emerging therapy that can provide stable, long-term relief from depressive symptoms for years. However, using DBS to treat depression remains challenging because each patient’s path to stable recovery looks different. Clinicians also must rely on subjective self-reports from patient interviews and psychiatric rating scales to track symptoms, which can fluctuate over time. This makes it hard to distinguish between normal mood variations and more serious situations requiring a tweak in stimulation. In addition, changes in symptoms in response to DBS can take weeks or months to occur, making it difficult to tell how well the therapy is working. “This biomarker suggests that brain signals can be used to help understand a patient’s response to DBS treatment and adjust the treatment accordingly,” said Joshua A. Gordon, M.D., Ph.D., director of NIH’s National Institute of Mental Health. “The findings mark a major advance in translating a therapy into practice.” Patient Response and Technology’s Role The patients in the study responded well to DBS therapy; after six months, 90% showed a significant improvement in depression symptoms, and 70% were in remission or no longer depressed. This high response rate was a unique opportunity to look back and examine how each patient’s brain responded differently to the stimulation during treatment. Christopher Rozell, Ph.D., Julian T. Hightower Chair and professor of electrical and computer engineering at Georgia Tech in Atlanta, and his colleagues used a technique called explainable artificial intelligence to understand these subtle changes in brain activity. The algorithm used brain data to distinguish between depressive versus stable recovery states and was able to explain what activity changes in the brain were the main drivers of this transition. Importantly, the biomarker also distinguished between normal day-to-day transient mood changes and sustained worsening symptoms. This algorithm could provide clinicians with an early warning signal that a patient is moving toward a highly depressive state and requires a DBS adjustment and extra clinical care. Further Insights and Future Steps “Nine out of 10 patients in the study got better, providing a perfect opportunity to use a novel technology to track the trajectory of their recovery,” said Helen Mayberg, M.D., director of the Nash Family Center for Advanced Circuit Therapeutics at Icahn Mount Sinai in New York City and co-senior author of the study. “Our goal is to identify an objective, neurological signal to help clinicians decide when, or when not, to make a DBS adjustment.” “We showed that by using a scalable procedure with single electrodes in the same brain region and informed clinical management, we can get people better,” said Dr. Rozell, co-senior author of the study. “This study also gives us an amazing scientific platform to understand the variation between patients, which is key to treating complex psychiatric disorders like treatment-resistant depression.” Further Insights and Future Steps Next, the team analyzed data from MRI brain scans collected from patients before surgery. The results revealed structural and functional abnormalities in the specific brain network targeted by the DBS therapy. More severe white matter deficits were related to longer recovery times. Researchers also used AI tools to analyze changes in facial expression extracted from videos of participant interviews. In a clinical setting, a patient’s facial expression can reflect the severity of their depression symptoms, a change that psychiatrists likely pick up on in routine clinical evaluations. They found patterns in individual patient expressions that coincided with their transition from illness to stable recovery. This could serve as an additional tool and new behavioral marker to track recovery in DBS therapy. More research is needed to determine whether the video analysis can reliably predict current and future disease states. Both the observed facial expression changes and anatomical deficits correlated with cognitive states captured by the biomarker, supporting the use of this biomarker in managing DBS therapy for depression. The research team, including Drs. Mayberg and Rozell, and Patricio Riva-Posse, M.D., at Emory University School of Medicine in Atlanta, is now confirming their findings in a second cohort of patients at Mount Sinai. Future studies will continue to explore the antidepressant effects of DBS by using a next-generation device to study the neural basis of moment-to-moment changes in mood. According to the research team, this study represents a significant advance in early-stage DBS therapy for various mental disorders, including severe depression, obsessive-compulsive disorder, post-traumatic stress disorder, binge eating disorder, and substance use disorder. Other DBS studies have identified brain biomarkers for chronic pain, but using brain data to successfully treat patients is still under development. For more on this research: Researchers Identify Crucial Biomarker That Tracks Recovery From Treatment-Resistant Depression Reference: “Cingulate dynamics track depression recovery with deep brain stimulation” by Sankaraleengam Alagapan, Ki Sueng Choi, Stephen Heisig, Patricio Riva-Posse, Andrea Crowell, Vineet Tiruvadi, Mosadoluwa Obatusin, Ashan Veerakumar, Allison C. Waters, Robert E. Gross, Sinead Quinn, Lydia Denison, Matthew O’Shaughnessy, Marissa Connor, Gregory Canal, Jungho Cha, Rachel Hershenberg, Tanya Nauvel, Faical Isbaine, Muhammad Furqan Afzal, Martijn Figee, Brian H. Kopell, Robert Butera, Helen S. Mayberg and Christopher J. Rozell, 20 September 2023, Nature. DOI: 10.1038/s41586-023-06541-3 The study was supported by the NIH BRAIN Initiative (UH3NS103550), the National Science Foundation, the Hope for Depression Research Foundation, and the Julian T. Hightower Chair at Georgia Tech.

The largest-ever study of brain genetics has identified over 4,000 genetic variants associated with brain structure. The study, which utilized MRI scans from adults and children, revealed that different sets of genes contribute to the folding and size of the cortex, and found that many genes linked to brain size in the general population overlap with genes implicated in cephalic conditions, shedding light on the genetic basis of brain development and its implications for neurological and psychiatric conditions. Largest Genetic Study of the Brain Reveals 4,000 Influencing Factors The largest-ever study of the genetics of the brain which analyzed around 36,000 brain scans, has pinpointed over 4,000 genetic factors associated with brain structure. The research, led by the University of Cambridge team, was recently published in the journal Nature Genetics. Our brains are intricate and highly complex organs, displaying significant variation between individuals in aspects such as overall brain volume, the folding patterns of the brain, and the thickness of these folds. Little is known about how our genetic makeup shapes the development of the brain. To answer this question, a team led by researchers at the Autism Research Centre, University of Cambridge, accessed MRI scans from over 32,000 adults from the UK Biobank cohort and over 4,000 children from the US-based ABCD study. From these scans, the researchers measured multiple properties of the outermost layer of the brain called the cortex. These included measures of the area and volume of the cortex as well as how the cortex is folded. They then linked these properties, measured both across the entire cortex as well as in 180 individual regions of the cortex, to genetic information across the genome. The team identified over 4,000 genetic variants linked to brain structure. Distinct Genetic Contributions to Brain Size and Folding These findings have allowed researchers to confirm and, in some cases, identify, how different properties of the brain are genetically linked to each other. Dr. Varun Warrier from the Autism Research Centre, who co-led the study, said: “One question that has interested us for a while is if the same genes that are linked to how big the cortex is – measured as both volume and area – are also linked to how the cortex is folded. By measuring these different properties of the brain and linking them to genetics, we found that different sets of genes contribute to folding and size of the cortex.” Overlapping Genes in Neurological Conditions The team also checked whether the same genes that are linked to variation in brain size in the general population overlap with genes linked to clinical conditions where head sizes are much larger or smaller than the general population, known as cephalic conditions. Dr. Richard Bethlehem, also from the Autism Research Centre and a co-lead of the study, said: “Many of the genes linked with differences in the brain sizes in the general population overlapped with genes implicated in cephalic conditions. However, we still do not know how exactly these genes lead to changes in brain size.” Dr. Warrier added: “This work shows that how our brain develops is partly genetic. Our findings can be used to understand how changes in the shape and size of the brain can lead to neurological and psychiatric conditions, potentially leading to better treatment and support for those who need it.” Reference: “Genetic insights into human cortical organization and development through genome-wide analyses of 2,347 neuroimaging phenotypes” by Varun Warrier, Eva-Maria Stauffer, Qin Qin Huang, Emilie M. Wigdor, Eric A. W. Slob, Jakob Seidlitz, Lisa Ronan, Sofie L. Valk, Travis T. Mallard, Andrew D. Grotzinger, Rafael Romero-Garcia, Simon Baron-Cohen, Daniel H. Geschwind, Madeline A. Lancaster, Graham K. Murray, Michael J. Gandal, Aaron Alexander-Bloch, Hyejung Won, Hilary C. Martin, Edward T. Bullmore and Richard A. I. Bethlehem, 17 August 2023, Nature Genetics. DOI: 10.1038/s41588-023-01475-y This study was supported by the Wellcome Trust. It was conducted in association with the NIHR CLAHRC for Cambridgeshire and Peterborough NHS Foundation Trust, and the NIHR Cambridge Biomedical Research Centre.

DVDV1551RTWW78V



Pillow ODM design company in China 》committed to helping you create value through custom manufacturingODM pillow factory in China 》built to serve both niche and mass production needsCustomized sports insole ODM Vietnam 》offering full-service support from design to delivery

限會員,要發表迴響,請先登入