Contents ...
udn網路城邦
AI與人類領域知識之間的差距
2025/05/18 23:41
瀏覽27
迴響0
推薦0
引用0

人工智慧與人類領域知識之間存在多種差距,並且有多種改進方法:

缺口類型

1.理解和背景:

  • o 人工智慧:擅長模式識別和統計相關性,但往往缺乏對潛在意義、背景和現實世界影響的真正理解。
  • o 人類:具有豐富的語境理解、常識推理能力以及將知識推廣到新情況的能力。

2.泛化與遷移學習:

  • o 人工智慧:難以將一個領域學到的知識應用到另一個領域,需要對新任務進行大量的再訓練。
  • o 人類:展現強大的遷移學習能力,將先前的經驗和理解應用於不同的環境。

3.記憶與知識表徵:

  • o 人工智慧:目前系統的記憶能力通常有限,尤其是對於長期依賴關係和細微知識。知識通常隱含在模型權重中。
  • o 人類:依賴龐大而靈活的記憶系統來檢索和應用過去的經驗和顯性知識。

4.推理與解決問題:

  • o 人工智慧:主要擅長機率模式匹配,但在複雜推理方面會遇到困難,尤其是在資訊不完整或模糊以及樣本外場景的情況下。
  • o 人類:能夠進行複雜的邏輯和抽象推理、創造性地解決問題並適應不可預見的情況。

5.道德、偏見和情緒智商:

  • o 人工智慧:缺乏內在價值觀、情感和道德推理,可能導致基於訓練資料的輸出出現偏差。
  • o 人類:擁有情緒智商、同理心和影響決策的道德感。

6.可解釋性和透明度:

  • o 人工智慧:許多先進的人工智慧模型(例如深度學習)以「黑盒子」的形式運行,因此很難理解它們的決策過程。
  • o 人類:通常可以清楚地表達其決策背後的原因,使其知識和流程透明化。

7.適應變化:

  • o 人工智慧:在需要靈活回應以及識別和解決新的、意外的問題的能力的動態環境中可能會遇到困難。
  • o 人類:利用自我意識和對環境的理解,不斷適應不斷變化的環境。

如何改善差距

彌合這些差距的策略包括人工智慧技術的進步和與人類領域專家加強合作:

1.增強資料整合和管理:

  • o 讓領域專家參與定義資料需求、識別相關特徵以及確保資料品質和上下文準確性。
  • o 實現由專家知識指導的情境化資料註解。
  • o 利用專家見解和增強技術解決資料缺口和偏見。

2.知識表示與整合:

  • o 發展並利用神經符號人工智慧方法將符號推理(規則、邏輯)與神經網路結合。
  • o 建構並利用知識圖譜來表示結構化領域知識。
  • o 透過以下技術增強大型語言模型 (LLM):
    •  結合特定領域的背景和推理的提示工程。
    •  對特定領域資料進行微調。
    •  檢索增強生成 (RAG) 存取外部知識庫。

3.可解釋人工智慧(XAI)和人機協作:

  • o 盡可能利用可解釋的人工智慧模型。
  • o 發展使用特定領域語言的基於推理的解釋技術。
  • o 實施人機互動系統來審查、驗證和修正人工智慧輸出。

4. 促進溝通和跨領域團隊:

  • o 促進人工智慧從業者和領域專家之間的清晰溝通並建立共享詞彙。
  • o 創造在整個 AI 開發生命週期中進行協作的綜合、跨領域團隊。
  • o 提供交叉訓練和研討會,以增進雙方之間的理解。

5.持續學習與適應:

  • o 讓領域專家參與人工智慧系統效能的持續監測和評估。
  • o 建立機制,不斷更新人工智慧知識庫,提供新資訊和專家見解。

透過專注於這些領域,我們可以創建不僅是強大的數據處理器而且對世界有更深入理解的人工智慧系統,從而實現人工智慧與人類之間更有效、更值得信賴的協作。

There are several types of gaps between AI and human domain knowledge, and various ways to improve them:

Types of Gaps

  1. Understanding and Context:
    • AI: Excels at pattern recognition and statistical correlations but often lacks true comprehension of the underlying meaning, context, and real-world implications.
    • Human: Possesses rich contextual understanding, common sense reasoning, and the ability to generalize knowledge to novel situations.
  2. Generalization and Transfer Learning:
    • AI: Can struggle to apply knowledge learned in one domain to another, requiring extensive retraining for new tasks.
    • Human: Demonstrates strong transfer learning capabilities, applying prior experiences and understanding to different contexts.
  3. Memory and Knowledge Representation:
    • AI: Current systems often have limited memory capabilities, especially for long-term dependencies and nuanced knowledge. Knowledge is often encoded implicitly in model weights.
    • Human: Relies on a vast and flexible memory system that allows for the retrieval and application of past experiences and explicit knowledge.
  4. Reasoning and Problem-Solving:
    • AI: Primarily excels at probabilistic pattern matching and can struggle with complex reasoning, especially with incomplete or ambiguous information and out-of-sample scenarios.
    • Human: Capable of complex logical and abstract reasoning, creative problem-solving, and adapting to unforeseen situations.
  5. Ethics, Bias, and Emotional Intelligence:
    • AI: Lacks intrinsic values, emotions, and ethical reasoning, potentially leading to biased outputs based on training data.
    • Human: Possesses emotional intelligence, empathy, and a sense of ethics that influences decision-making.
  6. Explainability and Transparency:
    • AI: Many advanced AI models (e.g., deep learning) operate as "black boxes," making it difficult to understand their decision-making processes.
    • Human: Can typically articulate the reasoning behind their decisions, making their knowledge and processes transparent.
  7. Adaptability to Change:
    • AI: May struggle in dynamic environments requiring flexible responses and the ability to identify and solve new, unexpected problems.
    • Human: Continuously adapts to changing circumstances, leveraging self-awareness and understanding of the environment.

How to Improve the Gaps

The strategies to bridge these gaps involve a combination of advancements in AI techniques and enhanced collaboration with human domain experts:

  1. Enhanced Data Integration and Curation:
    • Involve domain experts in defining data needs, identifying relevant features, and ensuring data quality and contextual accuracy.
    • Implement contextualized data annotation guided by expert knowledge.
    • Address data gaps and biases with expert insights and augmentation techniques.
  2. Knowledge Representation and Integration:
    • Develop and utilize neuro-symbolic AI approaches to integrate symbolic reasoning (rules, logic) with neural networks.
    • Build and leverage knowledge graphs to represent structured domain knowledge.
    • Enhance Large Language Models (LLMs) through techniques like:
      • Prompt engineering that incorporates domain-specific context and reasoning.
      • Fine-tuning on domain-specific data.
      • Retrieval-Augmented Generation (RAG) to access external knowledge bases.
  3. Explainable AI (XAI) and Human-AI Collaboration:
    • Utilize interpretable AI models where possible.
    • Develop reasoning-based explanation techniques that use domain-specific language.
    • Implement human-in-the-loop systems for review, validation, and correction of AI outputs.
  4. Fostering Communication and Interdisciplinary Teams:
    • Promote clear communication and establish shared vocabularies between AI practitioners and domain experts.
    • Create integrated, interdisciplinary teams that collaborate throughout the AI development lifecycle.
    • Provide cross-training and workshops to bridge the understanding between both groups.
  5. Continuous Learning and Adaptation:
    • Involve domain experts in the ongoing monitoring and evaluation of AI system performance.
    • Develop mechanisms for the continuous updating of AI knowledge bases with new information and expert insights.

By focusing on these areas, we can create AI systems that are not only powerful data processors but also possess a deeper understanding of the world, enabling more effective and trustworthy collaboration between AI and humans.


限會員,要發表迴響,請先登入